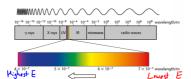
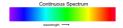

2.2 Electron configuration

 $\label{thm:containing} \mbox{Visible light is part of the electromagnetic spectrum} \qquad \mbox{- the spectrum containing all forms of electromagnetic radiation.} \\$


All electromagnetic waves travel at the same speed(the speed of light, c) but will have different wavelengths (A):

 $\lambda \rightarrow M$

Red light --- Longer wavelength --- Lower frequency We relate v and λ using the equation:

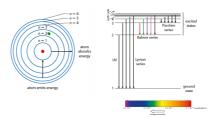


An electromagnetic wave that oscillates more must have a higher energy so we can say:

E is inversely proportional to λ Blue light --- Shorter wavelength --- Higher frequency = Higher energy

Energy --- Mayelength --- Mayelength

Passing white light through a prism will give a continuous spectrum showing the full range of frequencies.

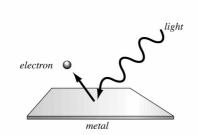

This means that energy can only exist in "discrete packets" of energy that we call quanta. So a photon is a quanta of energy.

Rydberg came up with a formula to predict the wavelength of any lines in the hydrogen emission spectrum. It is called the Rydberg equation — and uses the Rydberg constant.

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$
This is used to predict the wavelength of light entitled when an electron days from one energy level $\binom{n_2}{n_1}$ to a lower level $\binom{n_1}{n_1}$.

En el átomo de hidrógeno las líneas de la serie de Paschen se originan en las transiciones electrónicas desde niveles con n>3 hasta el nivel n+3. Calcula la longitud de onda en nm de la línea de la serie de Paschen correspondiente a la transición desde el nivel n=7. Datos: R_{ot} = 1,0968-10" m⁻¹

Hydragen emission spectrum

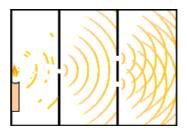

Wave-particle duality

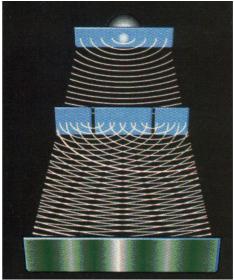
This is a property of light that means it can behave with a particulate-nature and also as a wave:

- We can view light as a stream of photons (packets of energy)
- · We can view light as a magnetic wave

Evidence for these 2 characteristics can be found in different phenomena:

Photoelectric effect




When light is shone at certain materials, a small current is produced as the energy from the photons (packets of energy) is tranferred to electrons - freeing them from their positions.

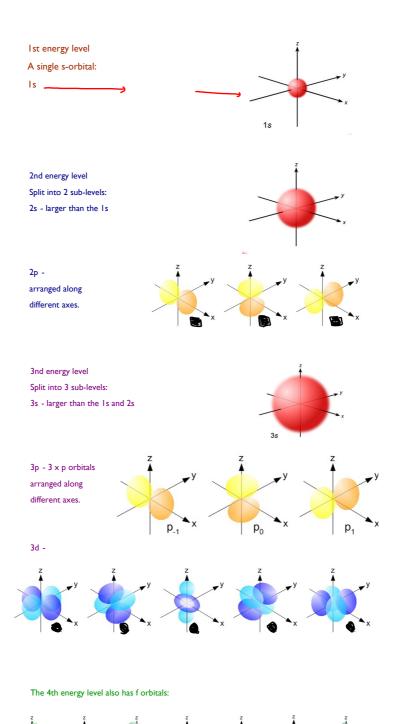
If light is treated as a wave then increasing the brightness of the light should lead to electrons being "knocked out" with more energy. However, this did not happen.

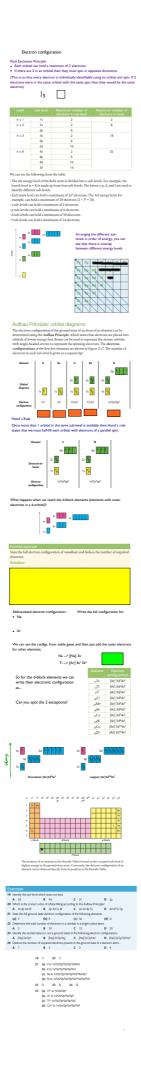
Einstein suggested that if light was treated as a stream of photons then increasing the brightness of the light would only increase then number of electrons being freed not the energy of them. This proved true and he won the Nobel prize!

Double slit experiment

The photosensitive detector shows bands of light reaching it suggesting that the 2 waves interact with their peaks and troughs to produce a detection or cancel it to produce no detection.

$\label{lem:lemberg} \mbox{Heisenberg's Uncertainty Principle and the concept of orbitals}$


A significant problem of Bohr's model was that he assumed the position and movement of an electron could be precisely described.


Heisenburg's Uncertainty Principle states that we can never know precisely the position and momentum of an electron . This is because through the process of trying to locate an electron will disturb its location.

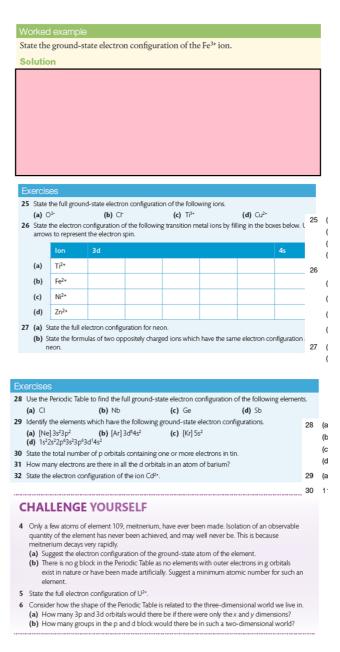
This led to the Schrodinger model of the atom (using the wave-like property of an electron). He stated that electrons must be found in orbitals. An orbital is a region of space where there is a very high chance of finding an electron (90%). This region is calculated using a mathmatical function.

The shape of an orbital will depend on the energy of an electron and the higher the energy, the further the orbital can be from

Electron configuration of ions

The formation of ion simply requires the addition or removal of electrons from a ground state element. E.g. ions of Al: ${}_*Al^* is\ 1s^2 2s^2 2p^6 3s^2$

• Al²⁺ is 1s²2s²2p⁶3s¹


• Al3+ is 1s22s2p6, etc.

However with the d-block elements we must know:

The 4s sub-level is very slightly lower that the 3d sub-level so it is filled (according to the Aufbau principle) beforehand. However, once there are electrons in the 3d sub-level the 4s orbital increases in energy.

This means that if we are writing electron configurations for positive ions such as Fe³⁺, when we remove electrons to form the ion, they are removed first from the 4s orbital.

For example, Cr is [Ar] $3d^54s^1$ and Cr^{3+} is [Ar] $3d^3$

