

How to become a formulation hero

Basics - you will need to know these...and a couple more!

Write the symbols and oxidation numbers for these elements (hint: these only have one ox. number):

- 1. Lithium, sodium and potassium (Group 1 elements)
- 2. Beryllium, magnesium and calcium (Group 2 elements)
- 3. Boron and aluminium (Group 3 elements)
- 4. Oxygen
- 5. Zinc
- 6. Silver

For these elements (hint: these have more than one):

- I. Carbon
- 2. Nitrogen
- 3. Sulfur
- 4. Chlorine, bromine, iodine and astatine
- 5. Iron, cobalt and nickel
- 6. Palladium and platinum
- 7. Copper and mercury
- 8. Gold

Formulate the ions and include the charges on each:

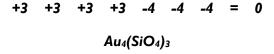
- 1. Example $Oxide \rightarrow O^{2-}$
 - (Any ion that ends in "ide" only contains I type of element)
- 2. Peroxide (the only time that oxygen does not have a oxidation number of -2)
- 3. Hydr**ide**
- 4. Chloride, iodide and bromide
 - (Any ion that ends with "ite" or "ate" always contain oxygen)
- 5. Hypochlorite, hypoiodite, hypobromite
- 6. Chlorite, iodite, bromite
- 7. Chlorate, iodate, bromate
- 8. Perchlorate, periodate, perbromate
- 9. Sulfide
- 10. Sulfite
- 11. Sulfate
- 12. Nitride
- 13. Nitrite
- 14. Nitrate

- 15. Carbonate
- 16. Silicate
- 17. Borate
- 18. Phosphate
- 19. Arsenate
- 20. Chromate and dichromate
- 21. Manganate and permanganate

Hint for formulation

When we are formulating chemical compounds we must follow I simple rule. When we add the oxidation numbers (of the element) and the charges on the ions, we must ensure that they equal 0.

Example 1:


Lithium sulfate – Lithium is in group I so will have an oxidation state of ± 1 . The sulfate ion has a charge of 2- (SO₄²-). So, to formulate this compound I will need 2 lithium atoms and I sulfate ion...

$$+1 +1 -2 = 0$$

$$Li_2SO_4$$

Example 2:

Gold(III) silicate – In this case gold has an oxidation state of +3 (remember it can also have +1). The silicate ion has a charge of 4- (SiO₄⁴). So, to formulate this compound I will need 4 gold atoms and 3 silicate ions...

Easy formulation

- Lithium hydride
- 2. Magnesium hydride
- 3. Aluminium hydride
- 4. Calcium oxide
- 5. Iron(II) sulfide
- 6. Zinc carbonate
- 7. Gold(I) bromide
- 8. Gold(III) fluoride
- 9. Cobalt(III) hydroxide
- 10. Cobalt(II) nitride
- II. Fe₂O₃
- 12. Pt(OH)₂
- 13. Pt(OH)₄
- 14. NiO

- 15. NiBr₃
- 16. CuS
- 17. Cu₂O
- 18. CuO₂
- 19. HgCl
- 20. HgCl₂

Some common names that you just have to remember:

NH₃ ammonia
 CH₄ methane
 BH₃ borane

• B₂H₆ **di**borane (because it is formed by 2 boranes)

H₂O water

Medium difficulty formulation (combining more complicated metals and ions)

- I. Titanium(II) hypochlorite
- 2. Titanium(IV) chlorite
- 3. Zinc bromate
- 4. Silver perbromate
- 5. Calcium chromate
- 6. Calcium dichromate
- 7. Lithium nitride
- 8. Potassium nitrite
- 9. Sodium nitrate
- 10. Aluminium sulfite
- II. Cobalt(II) arsenate
- 12. Lead(IV) cyanide
- 13. Lead(II) cyanate
- 14. Potassium manganate
- 15. Potassium permanganate
- 16. Be(IO₃)₂
- 17. Li₂O₂
- 18. Ni(NO₃)₃
- 19. Rb₂SO₃
- 20. Au(CIO)₃
- 21. Pb(IO₄)₄
- 22. CrMnO₄
- 23. Zn₃(PO₄)₂
- 24. HgCN
- 25. Hg(CN)₂
- 26. SnSiO₄
- 27. FeBr₃
- 28. Mn(OH)₂
- 29. Ag₂CO₃

Naming acids

Acids cause the most problems in formulation because they follow a slightly different logic. Any compound whose formula begins with hydrogen is called an acid. Therefore its name must end with "acid".

Example I – if we followed the normal rules for naming chemicals then **HCI** would be called **hydrogen chloride**. However, because the formula begins with an **H** we must call it acid. In this case, **hydrochloric acid**.

Example 2 - if we followed the normal rules for naming chemicals then H_2SO_4 would be called **hydrogen sulfate**. However, because the formula begins with an **H** we must call it acid. In this case, **sulfuric acid**.

Basic rules for naming acids:

- If a compound contains only hydrogen and I other element → hydro......ic acid
 e.g. HBr → hydrobromic acid
 H₂S → Hydrosulfuric acid
- For the group 7 acids that also contain oxygen we must convert their names as shown below:

Formula	Expected name	Actual name	
HCIO	Hydrogen hypo chlor ite	Hypo brom ous acid	
HCIO ₂	Hydrogen chlor ite	Brom ous acid	
HClO₃	Hydrogen chlor ate	Chlor ic acid	
HClO₄	Hydrogen per chlor ate	Per chlor ic acid	

• For other common acids (with S, N or P) where there are 2 possibilities we use the endings "ous" and "ic" depending on whether the lowest or highest ox. number is being used:

Lowest ox. number			Highest ox. number		
Sulfur ous acid	H_2SO_3	(S+4)	Sulfur ic acid	H_2SO_4	(S+6)
Nitr ous acid	HNO_2	(N^{+3})	Nitr ic acid	HNO ₃	(N^{+5})
Phosphor ous acid	H_3PO_3	(P^{+3})	Phosphoric acid	H_3PO_4	(P^{+5})

Difficult formulation

- I. Hypobromous acid
- 2. lodic acid
- 3. Hydroiodic acid
- 4. Phosphoric acid
- 5. Phosphorous acid
- 6. Nitric acid
- 7. Hydrochloric acid
- 8. Hydroselenic acid
- 9. Periodic acid

- 10. Chlorous acid
- II. HNO₃
- 12. H₂O (trick question)
- 13. H₂S
- 14. HBrO₃
- 15. HI
- **16.** HCIO₄
- 17. HCIO₃
- 18. H₂SO₄
- **19.** HIO₂
- **20.** H₃PO₃

If you can do these then you are a formulation hero.

Congratulations!

