How to become a formulation hero # Basics - you will need to know these...and a couple more! Write the symbols and oxidation numbers for these elements (hint: these only have one ox. number): - 1. Lithium, sodium and potassium (Group 1 elements) - 2. Beryllium, magnesium and calcium (Group 2 elements) - 3. Boron and aluminium (Group 3 elements) - 4. Oxygen - 5. Zinc - 6. Silver #### For these elements (hint: these have more than one): - I. Carbon - 2. Nitrogen - 3. Sulfur - 4. Chlorine, bromine, iodine and astatine - 5. Iron, cobalt and nickel - 6. Palladium and platinum - 7. Copper and mercury - 8. Gold ## Formulate the ions and include the charges on each: - 1. Example $Oxide \rightarrow O^{2-}$ - (Any ion that ends in "ide" only contains I type of element) - 2. Peroxide (the only time that oxygen does not have a oxidation number of -2) - 3. Hydr**ide** - 4. Chloride, iodide and bromide - (Any ion that ends with "ite" or "ate" always contain oxygen) - 5. Hypochlorite, hypoiodite, hypobromite - 6. Chlorite, iodite, bromite - 7. Chlorate, iodate, bromate - 8. Perchlorate, periodate, perbromate - 9. Sulfide - 10. Sulfite - 11. Sulfate - 12. Nitride - 13. Nitrite - 14. Nitrate - 15. Carbonate - 16. Silicate - 17. Borate - 18. Phosphate - 19. Arsenate - 20. Chromate and dichromate - 21. Manganate and permanganate #### Hint for formulation When we are formulating chemical compounds we must follow I simple rule. When we add the oxidation numbers (of the element) and the charges on the ions, we must ensure that they equal 0. #### Example 1: Lithium sulfate – Lithium is in group I so will have an oxidation state of ± 1 . The sulfate ion has a charge of 2- (SO₄²-). So, to formulate this compound I will need 2 lithium atoms and I sulfate ion... $$+1 +1 -2 = 0$$ $$Li_2SO_4$$ #### Example 2: Gold(III) silicate – In this case gold has an oxidation state of +3 (remember it can also have +1). The silicate ion has a charge of 4- (SiO₄⁴). So, to formulate this compound I will need 4 gold atoms and 3 silicate ions... ## **Easy formulation** - Lithium hydride - 2. Magnesium hydride - 3. Aluminium hydride - 4. Calcium oxide - 5. Iron(II) sulfide - 6. Zinc carbonate - 7. Gold(I) bromide - 8. Gold(III) fluoride - 9. Cobalt(III) hydroxide - 10. Cobalt(II) nitride - II. Fe₂O₃ - 12. Pt(OH)₂ - 13. Pt(OH)₄ - 14. NiO - 15. NiBr₃ - 16. CuS - 17. Cu₂O - 18. CuO₂ - 19. HgCl - 20. HgCl₂ # Some common names that you just have to remember: NH₃ ammonia CH₄ methane BH₃ borane • B₂H₆ **di**borane (because it is formed by 2 boranes) H₂O water # Medium difficulty formulation (combining more complicated metals and ions) - I. Titanium(II) hypochlorite - 2. Titanium(IV) chlorite - 3. Zinc bromate - 4. Silver perbromate - 5. Calcium chromate - 6. Calcium dichromate - 7. Lithium nitride - 8. Potassium nitrite - 9. Sodium nitrate - 10. Aluminium sulfite - II. Cobalt(II) arsenate - 12. Lead(IV) cyanide - 13. Lead(II) cyanate - 14. Potassium manganate - 15. Potassium permanganate - 16. Be(IO₃)₂ - 17. Li₂O₂ - 18. Ni(NO₃)₃ - 19. Rb₂SO₃ - 20. Au(CIO)₃ - 21. Pb(IO₄)₄ - 22. CrMnO₄ - 23. Zn₃(PO₄)₂ - 24. HgCN - 25. Hg(CN)₂ - 26. SnSiO₄ - 27. FeBr₃ - 28. Mn(OH)₂ - 29. Ag₂CO₃ #### Naming acids Acids cause the most problems in formulation because they follow a slightly different logic. Any compound whose formula begins with hydrogen is called an acid. Therefore its name must end with "acid". **Example I** – if we followed the normal rules for naming chemicals then **HCI** would be called **hydrogen chloride**. However, because the formula begins with an **H** we must call it acid. In this case, **hydrochloric acid**. **Example 2** - if we followed the normal rules for naming chemicals then H_2SO_4 would be called **hydrogen sulfate**. However, because the formula begins with an **H** we must call it acid. In this case, **sulfuric acid**. ## Basic rules for naming acids: - If a compound contains only hydrogen and I other element → hydro......ic acid e.g. HBr → hydrobromic acid H₂S → Hydrosulfuric acid - For the group 7 acids that also contain oxygen we must convert their names as shown below: | Formula | Expected name | Actual name | | |-------------------|---------------------------------------|----------------------------------|--| | HCIO | Hydrogen hypo chlor ite | Hypo brom ous acid | | | HCIO ₂ | Hydrogen chlor ite | Brom ous acid | | | HClO₃ | Hydrogen chlor ate | Chlor ic acid | | | HClO₄ | Hydrogen per chlor ate | Per chlor ic acid | | • For other common acids (with S, N or P) where there are 2 possibilities we use the endings "ous" and "ic" depending on whether the lowest or highest ox. number is being used: | Lowest ox. number | | | Highest ox. number | | | |--------------------------|-----------|------------|-----------------------|------------------|------------| | Sulfur ous acid | H_2SO_3 | (S+4) | Sulfur ic acid | H_2SO_4 | (S+6) | | Nitr ous acid | HNO_2 | (N^{+3}) | Nitr ic acid | HNO ₃ | (N^{+5}) | | Phosphor ous acid | H_3PO_3 | (P^{+3}) | Phosphoric acid | H_3PO_4 | (P^{+5}) | #### Difficult formulation - I. Hypobromous acid - 2. lodic acid - 3. Hydroiodic acid - 4. Phosphoric acid - 5. Phosphorous acid - 6. Nitric acid - 7. Hydrochloric acid - 8. Hydroselenic acid - 9. Periodic acid - 10. Chlorous acid - II. HNO₃ - 12. H₂O (trick question) - 13. H₂S - 14. HBrO₃ - 15. HI - **16.** HCIO₄ - 17. HCIO₃ - 18. H₂SO₄ - **19.** HIO₂ - **20.** H₃PO₃ If you can do these then you are a formulation hero. # Congratulations!