Velocity

Velocity is speed in a particular direction.
For example, the pilot of a plane might be told to fly at $100 \mathrm{~ms}^{-1}$ due North. The direction is important.

If an object changes its velocity, it is accelerating (or decelerating).

$$
\begin{aligned}
& \text { Calculating Acceleration }= \\
& \begin{array}{l}
\text { (in } \left.\mathrm{ms}^{-2}\right)
\end{array} \quad \frac{\text { change in velocity }\left(\mathrm{ms}^{-1}\right)}{\text { time taken for the change }(\mathrm{s})}
\end{aligned}
$$

Velocity - Time Graphs for a car:

A horizontal line means that the car is travelling with a constant velocity.

You can calculate the acceleration from the gradient or slope of the velocity-time graph.

In the graph shown to the right, the acceleration during $\mathrm{P}-\mathrm{Q}$
$=\quad$ change in velocity time taken for change
$=\frac{10-0\left(\mathrm{~ms}^{-1}\right)}{4 \mathrm{~s}}$
$=2.5 \mathrm{~ms}^{-2}$
The distance travelled is shown by the
area under the velocity-time graph.
In the graph to the right, the
distance
travelled during $\mathrm{P}-\mathrm{Q}$
$=$ area of triangle under $\mathrm{P}-\mathrm{Q}$
$=1 / 2 \times$ base \times height
$=1 / 2 \times 4 \times 10$
$=20 \mathrm{~m}$

P-Q The car starts from rest and accelerates uniformly, until it reaches a velocity of $10 \mathrm{~m} / \mathrm{s}$ after 4 s .

Q-R It stays at this speed for 10 seconds.
R-S The car decelerates, from $10 \mathrm{~m} / \mathrm{s}$ to rest, in 5 s .

