1 .- A body moves from rest with constant acceleration of $8 \mathrm{~ms}^{-2}$. Calculate: a) its velocity after 5 sb) the distance travelled from rest, after 5 s .

2 .- The velocity of a vehicle increases smoothly from $15 \mathrm{kmh}^{-1}$ to $60 \mathrm{kmh}^{-1}$ in 20 s . Calculate a) the average speed in kmh^{-1}; in $\mathrm{ms}^{-1}, \mathrm{~b}$) acceleration c) the distance in meters covered during this time.

3 .- A vehicle traveling at a speed of $15 \mathrm{~ms}^{-1}$, increases its speed by $1 \mathrm{~ms}^{-1}$, every second. a) Calculate the distance covered in 6 s . b) If it decelerates (slows down) at $1 \mathrm{~ms}^{-1}$, each second, calculate the distance covered in 6 s and then the time it would take to stop.

4 .- A car is travelling at a speed of $45 \mathrm{kmh}^{-1}$, the brakes are applied and after 5 s the speed has been reduced to $15 \mathrm{kmh}^{-1}$. Calculate a) the acceleration b) distance travelled for the five seconds of deceleration.

5 .- The speed of a train is reduced uniformly from $12 \mathrm{~ms}^{-1}$ to $5 \mathrm{~ms}^{-1}$. If you are told that during this time the train travels a distance of 100 m , calculate a) the acceleration b) how far the train would travel to a stop if we assume the same deceleration.

6 .- A body that has a velocity of $10 \mathrm{~ms}^{-1}$ accelerates at $2 \mathrm{~ms}^{-2}$. Calculate: a) The increase in speed after 1 min . b) The speed at the end of the first minute. c) The average speed during the first minute. d) The displacement after 1 minute.

7 .- A body that has a velocity of $8 \mathrm{~ms}^{-1}$ accelerates uniformly so that it travels 640 m in 40 s . Calculate: a) The average velocity for the 40 s . b) The final speed. c) acceleration.

8 .- A car starts from rest with constant acceleration of $5 \mathrm{~ms}^{-2}$. Calculate its speed after 4 s and how far it travels.
9.- A body is falling down an inclined plane with constant acceleration from rest. After 3 s the speed acquired is $27 \mathrm{~ms}^{-1}$, calculate the speed and distance travelled 6 s after starting the movement.

10 .- A body starts from rest with constant acceleration and after covering 250 m , its velocity is $80 \mathrm{~ms}^{-1}$. Calculate the acceleration.

11 .- The speed with which a projectile shoots out of a canon is $600 \mathrm{~ms}^{-1}$. Knowing that the barrel length is 150 cm , calculate the average acceleration of the projectile while it is in the canon.

12 .- A car increases its speed uniformly from $20 \mathrm{~ms}^{-1}$ to $60 \mathrm{~ms}^{-1}$, while driving 200 m . Calculate the acceleration and the time it takes to do this.

13 .- A plane travels, before take-off, a distance of $1,800 \mathrm{~m}$ in 12 s with constant acceleration.
Calculate: a) acceleration, b) the speed at take-off, c) the distance traveled during the first and the twelfth second.

14 .- A train has a velocity of $60 \mathrm{kmh}^{-1}$ comes to a halt and in 44 s , it stops. Calculate the acceleration and the distance it travels until it stops.

15 .- A body with a speed of $40 \mathrm{~ms}^{-1}$, decreases velocity uniformly at the rate of $5 \mathrm{~ms}^{-2}$. Calculate: a) the velocity after $6 \mathrm{~s}, \mathrm{~b}$) the average speed during the $6 \mathrm{~s}, \mathrm{c}$) the distance covered in 6 s .

16 .- A spacecraft moves in free space with a constant acceleration of $9.8 \mathrm{~ms}^{-2}$. a) If it departs from zero ms^{-1} how long will it take to acquire a speed of one tenth of the speed of light, b) how far will it travel during this time? (speed of light $=3 \times 108 \mathrm{~ms}^{-1}$)
17.- A jet lands with a speed of $100 \mathrm{~ms}^{-1}$ and can accelerate to a maximum rate of $-5 \mathrm{~ms}^{-2}$ when it will stop. a) From the moment it touches the runway, what is the minimum time required before it stops?, b) can the aircraft land on a runway with a length of 0.8 km ?

