1. Formulation and nomenclature of inorganic compounds

(nomenclature is de systematic approach to naming chemical compounds)

There are two different ways to name inorganic compounds: systematic or stoichiometric, and Stock or common nomenclature.

• The systematic nomenclature indicates the number of atoms of each element in the formula by using Greek prefixes.(1-mono, 2-di, 3-tri, 4-tetra, 5-penta, 6-hexa, 7-hepta, 8-octa, 9-nona, 10-deca). The systematic nomenclature is often used to name binary compounds, but hardly used in any other cases.

• The Stock or common nomenclature uses accepted names for the anions and indicates the oxidation state of the metal with roman numbers in parentheses. It is very simple and frequently used.

To work out the formula, simply identify the cation and anion and calculate the adequate sub index to get an overall zero charge for the compound.

1.1. Ions

Cations are named with the name of the element followed by the charge in parentheses: Fe^{2+} : iron (2+) Na^+ : sodium (1+)

Anions are named with the –ide ending followed by the charge in parentheses, although this one can be omitted if there is no ambiguity:

 Cl^- : chloride S^{2-} : sulfide

1.2. Metallic hydrides

These are combinations of a metallic cation with the hydride anion (H⁻).

Common accepted nomenclature: *metal name*(oxidation state in romans) hydride; if the metal has only one oxidation state, it is omitted.

Stoichiometric nomenclature: *metal name* prefix-hydride; if the metal has only one oxidation state prefixes can be avoided, and often mono- prefix too.

Examples:

LiH	lithium hydride	lithium hydride
PdH ₂	palladium(II) hydride	palladium dihydride
FeH ₃	iron(III) hydride	iron trihydride

1.3. Non-metallic hydrides

These are combinations of non-metal simple anions with the H^+ ion.

There are two kind of non-metallic hydrides. The ones of the groups 13, 14, 15 and O have their own names that you have to know:

B_2H_6	borane
CH_4	methane
NH ₃	ammonia

Hydrides of the other non-metals are gases that, when dissolved in water, have acid character and can be named with the prefix hydro- connected to the stem of the non-metal with an –ic suffix and ending with the word acid. When referring to the gases, then they are named with the word hydrogen followed by the name of the non-metal ended with the prefix –ide:

H_2S	hydrosulfuric acid	hydrogen sulfide
H ₂ Se	hydroselenic acid	hydrogen selenide
HF	hydrofluoric acid	hydrogen fluoride
HCl	hydrochloric acid	hydrogen chloride
HBr	hydrobromic acid	hydrogen bromide
HI	hydriodic acid	hydrogen iodide
	(note the -o- of prefix dropped)	

1.4. Metallic oxides

These are combinations of the oxide anion (O^2) with metallic cations. They have basic character, and, when reacted with water, produce hydroxides.

Their nomenclature is the same that for metallic hydrides, changing the word hydride for oxide:

FeO	iron(II) oxide	iron monoxide
Fe ₂ O ₃	iron(III) oxide	diiron trioxide
Al_2O_3	aluminium oxide	aluminium oxide
Cu ₂ O	copper(I) oxide	dicopper monoxide

1.5. Non-metallic oxides

These are combinations of the oxide anion (O^2) with non-metals, acting with some of their positive oxidation states. They have acid character, and, when reacted with water, produce oxyacids. They are formulated in the same way as the metallic oxides, and their nomenclature is also the same:

Cl ₂ O	chlorine(I) oxide	dichlorine monoxide
Cl_2O_3	chlorine(III) oxide	dichlorine trioxide
Cl_2O_5	chlorine(V) oxide	dichlorine pentoxide
Cl_2O_7	chlorine(VII) oxide	dichlorine heptoxide
SO ₃	sulfur(VI) oxide	sulfur trioxide
SO_2	sulfur(IV) oxide	sulfur dioxide

There are two metals that present a dual behavior, being able to act both as metals and nonmetals; these are chromium and manganese. When chromium acts with the oxidations state +6 and manganese with +6 and +7, their oxides have acid character and produce oxyacids and anions like chromate or permanganate.

1.6. Binary salts

Binary salts have a metallic cation and a simple non-metallic anion. They are named writing the name of the cation followed by the one of the anion.

NaCl	sodium chloride	sodium chloride
FeS	iron(II) sulfide	iron monosulfide
CoI ₃	cobalt(III) iodide	cobalt triiodide
NiN	nickel(III) nitride	nickel mononitride

lithium selenide

Li₂Se

lithium selenide

1.7. Hydroxides

In the hydroxides, a metallic cation is combined with the hydroxide group, OH^{-} , which formally acts on the whole with the oxidation state -1. They are named like the metallic oxides, changing oxide for hydroxide:

NaOH	sodium hydroxide	sodium hydroxide
$Sn(OH)_2$	tin(II) hydroxide	tin dihydroxide
Mn(OH) ₃	manganese(III) hydroxide	manganese trihydroxide

1.8. Oxyacids

Oxyacids are formed by the reaction of water with non-metallic oxides. They are formulated adding to the corresponding anion the ions H^+ needed to get a zero charge. They are named by changing the anion endings –ite and –ate by –ous and –ic respectively and adding the word acid:

HClO	hypochlorous acid
HClO ₂	chlorous acid
HClO ₃	chloric acid
HClO ₄	perchloric acid
H_2CO_3	carbonic acid
H_2SO_3	sulfurous acid
H_2SO_4	sulfuric acid
HIO_4	periodic acid
H_3PO_4	phosphoric acid
H_2CrO_4	chromic acid
$H_2Cr_2O_7$	dichromic acid

1.9. Salts

Salts are formulated combining the ions that form them adequately. They are named following the same rules than for binary salts:

$BrO_3 + Au^+ = AuBrO_3$	gold(I) bromate
$MnO_4^- + K^+ = KMnO_4$	potassium permanganate

2. Exercises

1.	ZnSO ₃	16. H_2Se
2.	SrO	17. H ₂ S
3.	Hg_2CO_3	18. Ni(OH) ₂
4.	NO ₂	19. BaSO ₃
5.	KBr	20. mercury(II) sulfide
6.	CuOH	21. zinc dichromate
7.	PdH ₂	22. ammonia
8.	HIO	23. nitrous acid
9.	K_2MnO_4	24. phosphorus(III) iodide
10.	$Au_2(CrO_4)_3$	25. copper(I) hydroxide
11.	KIO_4	26. lead(II) iodate
12.	HBrO ₃	27. iron(III) fluoride
13.	Co_2O_3	28. gold(III) hydroxide
14.	Ag ₂ O	29. sodium hypochlorite
15.	Pb(OH) ₂	30. zinc chromate

- 31. nickel(II) nitrate
- 32. rubidium hydride
- 33. sulfurous acid
- 34. borane
- 35. methane
- 36. tin(II) chlorate
- 37. aluminium trichloride
- 38. nickel(III) iodide
- 39. nitrogen(III) oxide
- 40. cobalt(II) oxide
- 41. lead(IV) sulfide
- 42. sodium manganate