Definition: The mean is the sum of all values devided by the number of all values

For example, consider the following values: $2 ; 4 ; 8 ; 11 ; 12 ; 13 ; 14 ; 14 ; 23 ; 24$

The mean is calculated as follows: $\frac{150}{11}=14$

Download and open table 1 from the website

The mean is a measure of the central tendency of a set of data.

Table 1: Raw measurements of bill length in A. colubris and C. latirostris.

A. colubris and C. latirostris.			(sum of values / n)
	Bill length (1mm)		
n	A. colubris	C. latirostris	
1	13,0	17,0	\square
2	14,0	18,0	
3	15,0	18,0	$\mathrm{n}=$ sample size. The bigger
4	15,0	18,0	In this case $\mathrm{n}=10$ for each grour
5	15,0	19,0	
6	16,0	19,0	All values should be centred
7	16,0	19,0	tool uncertainty.
8	18,0	20,0	
9	18,0	20,0	
10	19,0	20,0	
Mean	\leftarrow		-AVERAGE(highlight raw data)
s			

The mean is a measure of the central tendency of a set of data.

Table 1: Raw measurements of bill length in A. colubris and C. latirostris.

	Bill length ($\pm 1 \mathrm{~mm}$)	
\mathbf{n}	A. colubris	C. latirostris
1	13,0	17,0
2	14,0	18,0
3	15,0	18,0
4	15,0	18,0
5	15,0	19,0
6	16,0	19,0
7	16,0	19,0
8	18,0	20,0
9	18,0	20,0
10	19,0	20,0
Mean	15,9	18,8
s		

Descriptive table title and number.
Uncertainties must be included.

Raw data and the mean need to have consistent decimal places (in line with uncertainty of the measuring tool)

Try to get these done!

Graph 1: Comparing mean bill lengths in two hummingbird species, A. colubris and C.
latirostris.

Descriptive title, with graph number.

Labeled point

Y-axis clearly labeled, with uncertainty.

Make sure that the y-axis begins at zero.

Graph 1: Comparing mean bill lengths in two
hummingbird species, A. colubris and C. latirostris.
${ }^{\text {C. Iatirostris, }}$ 18.8 mm
A. colubris, 15.9 mm

From the means alone you might conclude that C. latirostris has a longer bill than A. colubris.

But the mean only tells part of the story.

