Colegio de

San Francisco de Paula

Mol to mass

Sample Problem

Potassium chlorate is sometimes decomposed in the laboratory to generate oxygen. The reaction is $2 \mathrm{KClO}_{3}(s) \rightarrow 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(g)$. What mass of KClO_{3} do you need to produce $0.50 \mathrm{~mol} \mathrm{O}_{2}$?

Solution

ANALYZE
What is given in the problem?
the amount of oxygen in moles
What are you asked to find?

Items	Data	
Substance	KClO_{3}	O_{2}
Coefficient in balanced equation	2	3
Molar mass*	$122.55 \mathrm{~g} / \mathrm{mol}$	NA
Amount	$? \mathrm{~mol}$	0.50 mol
Mass	$? \mathrm{~g}$	NA

Mole to mole

So the question in words is: If 2 mol of KClO_{3} is needed to create 3 mol of O_{2}, then how much is needed to create 0.50 mol ?

You can slve this problem in various ways but the easiest would be to use a rule of three.
$3 / 0.5=6$ (So we have a sixth part of the balanced equation)
If we no calculate a sixth of the 2 mol of KClO_{3} we will get the amount of mol need, so: $2 / 6=0.33 \mathrm{~mol}$ of KClO_{3}

Mole to mass

Now you simply need to apply the formula again to calculate the mass if you have the mol. So: Mol \times Molecular mass $=$ mass of substance
$0.33 \times 122.55 \mathrm{~g} / \mathrm{mol}=40.44 \mathrm{~g}$ of KClO_{3}

San Francisco de Paula
 Practice

1. Phosphorus burns in air to produce a phosphorus oxide in the following reaction:

$$
4 \mathrm{P}(s)+5 \mathrm{O}_{2}(g) \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}(s)
$$

a. What mass of phosphorus will be needed to produce 3.25 mol of $\mathrm{P}_{4} \mathrm{O}_{10}$?
b. If 0.489 mol of phosphorus burns, what mass of oxygen is used? What mass of $\mathrm{P}_{4} \mathrm{O}_{10}$ is produced?
2. Hydrogen peroxide breaks down, releasing oxygen, in the following reaction:

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(a q) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{O}_{2}(g)
$$

a. What mass of oxygen is produced when 1.840 mol of $\mathrm{H}_{2} \mathrm{O}_{2}$ decomposes?
b. What mass of water is produced when $5.0 \mathrm{~mol} \mathrm{O}_{2}$ is produced by this reaction?

