

Sample Problem

Potassium chlorate is sometimes decomposed in the laboratory to generate oxygen. The reaction is $2\text{KClO}_3(s) \rightarrow 2\text{KCl}(s) + 3\text{O}_2(g)$. What mass of KClO_3 do you need to produce 0.50 mol O_2 ?

Solution ANALYZE

What is given in the problem?

What are you asked to find?

the amount of oxygen in moles the mass of potassium chlorate

Items	Data	
Substance	KClO ₃	O_2
Coefficient in balanced equation	2	3
Molar mass*	122.55 g/mol	NA
Amount	? mol	0.50 mol
Mass	? g	NA

Mole to mole

So the question in words is: If 2 mol of $KCIO_3$ is needed to create 3 mol of O_2 , then how much is needed to create 0.50mol?

You can slve this problem in various ways but the easiest would be to use a rule of three.

3/0.5= 6 (So we have a sixth part of the balanced equation) If we no calculate a sixth of the 2 mol of KClO₃ we will get the amount of mol need, so: $2/6= 0.33 \text{ mol of KClO}_3$

Mole to mass

Now you simply need to apply the formula again to calculate the mass if you have the mol. So: Mol x Molecular mass = mass of substance

0.33 x 122.55g/mol = 40.44 g of KClO₃

San Francisco de Paula Practice

1. Phosphorus burns in air to produce a phosphorus oxide in the following reaction:

$$4\mathrm{P}(s) + 5\mathrm{O}_2(g) \rightarrow \mathrm{P}_4\mathrm{O}_{10}(s)$$

a. What mass of phosphorus will be needed to produce $3.25 \text{ mol of } P_4O_{10}$?

- **b.** If 0.489 mol of phosphorus burns, what mass of oxygen is used? What mass of P_4O_{10} is produced?
- 2. Hydrogen peroxide breaks down, releasing oxygen, in the following reaction: $2H_2O_2(aq) \rightarrow 2H_2O(l) + O_2(g)$
 - **a.** What mass of oxygen is produced when $1.840 \text{ mol of } H_2O_2$ decomposes?

b. What mass of water is produced when $5.0 \text{ mol } O_2$ is produced by this reaction?

UPLOAD YOUR ANSWERS FOR PEER ASSESSMENT. DISCUSS THE PROBLEMS IN THE FORUM