

San Francisco de Paula Mass to mass

Sample Problem

Methane burns in air by the following reaction:

 $\mathrm{CH}_4(g)$ + 2 $\mathrm{O}_2(g)$ \rightarrow $\mathrm{CO}_2(g)$ + 2 $\mathrm{H}_2\mathrm{O}(g)$

What mass of water is produced by burning 500. g of methane?

Solution ANALYZE

What is given in the problem? What are you asked to find?

the mass of methane in grams the mass of water produced

ltems	Data	
Substance	CH_4	H_2O
Coefficient in balanced equation	1	2
Molar mass	16.05 g/mol	18.02 g/mol
Amount	? mol	? mol
Mass	50 0. g	? g

Step 1: Convert the mass of methane to mol.
Formula: mass of substance/molar mass = Mol
So: 500/16.05 = 31.15 mol of CH₄

Step 2: Do the mole to mole ratio. For 1 mole of CH_4 , 2 mol of H_2O is created. So 31.15 x 2 = 62.30 mol of H_2O

Step 3: Convert the moles to mass Formula: *mol x molar mass= mass substance* So: 62.30 x 18.02 = **1122.6 g of H2O (or: 1.12x10³ g)**

San Francisco de Paula Practice

1. Calculate the mass of silver bromide produced from 22.5 g of silver nitrate in the following reaction:

 $2\operatorname{AgNO}_3(aq) + \operatorname{MgBr}_2(aq) \rightarrow 2\operatorname{AgBr}(s) + \operatorname{Mg(NO_3)}_2(aq)$

2. What mass of acetylene, C_2H_2 , will be produced from the reaction of 90. g of calcium carbide, CaC_2 , with water in the following reaction?

 $\operatorname{CaC}_{2}(s) + 2\operatorname{H}_{2}\operatorname{O}(l) \rightarrow \operatorname{C}_{2}\operatorname{H}_{2}(g) + \operatorname{Ca}(\operatorname{OH})_{2}(s)$

3. Chlorine gas can be produced in the laboratory by adding concentrated hydrochloric acid to manganese(IV) oxide in the following reaction:

 $MnO_2(s) + 4HCl(aq) \rightarrow MnCl_2(aq) + 2H_2O(l) + Cl_2(g)$

a. Calculate the mass of MnO_2 needed to produce 25.0 g of Cl_2 .

b. What mass of $MnCl_2$ is produced when 0.091 g of Cl_2 is generated?

UPLOAD YOUR ANSWERS FOR PEER ASSESSMENT. DISCUSS THE PROBLEMS IN THE FORUM