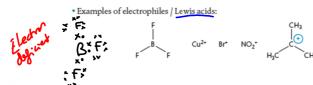


 $Cu^{2+}(aq) + 6H_2O(l) \rightarrow [Cu(H_2O)_6]^{2+}(aq)$

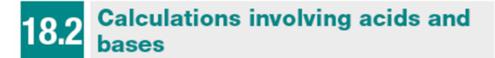
 Cu^{2+} is a Lewis acid and $\mathrm{H}_2\mathrm{O}$ is a Lewis base.


Typical ligands found in complex ions include H₂O, CN⁻, and NH₃. Note that these all possess lone pairs of electrons, the defining feature of their Lewis base properties

We can relate these terms to those of "nucleophile" and "electrophile" found in organic chemistry:

A nucleophile ('likes nucleus') is an electron-rich species that donates a lone pair to form a new covalent bond in a reaction.

An electrophile ('likes electrons') is an electron-deficient species that accepts a lone pair from another reactant to form a new covalent bond.


• Examples of nucleophiles / Lewis bases:

Comparison of Brønsted-Lowry and Lewis theories of acids and bases

Theory	Definition of acid	Definition of base
Brønsted–Lowry	proton donor	proton acceptor
Lewis	electron pair acceptor	electron pair donor

- 19 For each of the following reactions identify the Lewis acid and the Lewis base. $\begin{array}{ll} \textbf{(a)} & 4NH_3(aq) + Zn^{2*}(aq) \rightarrow [Zn(NH_3)_4]^{2*}(aq) \\ \textbf{(b)} & 2Cl^{-}(aq) + BeCl_2(aq) \rightarrow [BeCl_4]^{2-}(aq) \\ \textbf{(c)} & Mg^{2*}(aq) + 6H_2O(l) \rightarrow [Mg~(H_2O)_4]^{2*}(aq) \\ \end{array}$ ${\bf 20}\,$ Which of the following could not act as a ligand in a complex ion with a transition metal? A CI-B NCl₃ C PCI₃ D CH₄ 21 Which of the following reactions represents an acid-base reaction according to Lewis theory but not according to Brønsted-Lowry theory? A NH₂(ag) + HCl(ag) ≓ NH₂Cl(ag) **B** $2H_2O(l) \Rightarrow H_3O^*(aq) + OH^*(aq)$ **C** $Cu^2^*(aq) + 4NH_3(aq) \Rightarrow [Cu(NH_3)_1]^{2*}(aq)$ **D** $BaO(s) + H_2O(l) \Rightarrow Ba^{2*}(aq) + 2OH^*(aq)$
- 19 (a) Lewis acid Zn2+; Lewis base NH_a
 - (b) Lewis acid BeCl₂; Lewis base Ch
 - (c) Lewis acid Mg2+; Lewis base H2O
- 20 D, CH₄ because it does not possess a lone pair.
- 21 C, there is no exchange of H+.

Understandings:

- The expression for the dissociation constant of a weak acid (K_a) and a weak base (K_b) .
- For a conjugate acid-base pair, K_a × K_b = K_w.

Guidance

- The value K_w depends on the temperature.
- Only examples involving the transfer of one proton will be assessed.
- Calculations of pH at temperatures other than 298 K can be assessed.
- The relationship between K_a and pK_a is pK_a = -log K_a and between K_b and pK_b is pK_b = -log K_b.

$K_{\rm w}$ is temperature dependent

The ionic product constant of water, Kw, was derived on pages 358-359.

$$K_{w} = [H^{+}] [OH^{-}] = 1.00 \times 10^{-14} \text{ at } 298 \text{ K}$$

 $pk_{u} = pH + pOH$

The dissociation of water is an endothermic reaction (as it requires breaking a bond).

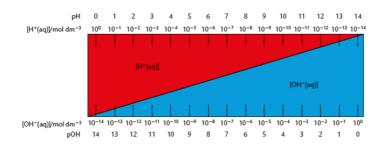
How will an increase in temperature affect K_w? How will it affect pH?

Temperature / °C	K _w	[H ⁺] in pure water $(\sqrt{K_w})$	pH of pure water (–log ₁₀ [H+])
0	1.5 × 10 ⁻¹⁵	0.39 × 10 ⁻⁷	7.47
10	3.0 × 10 ⁻¹⁵	0.55 × 10 ⁻⁷	7.27
20	6.8 × 10 ⁻¹⁵	0.82 × 10 ⁻⁷	7.08
25	1.0 × 10 ⁻¹⁴	1.00 × 10 ⁻⁷	7.00
30	1.5 × 10 ⁻¹⁴	1.22 × 10 ⁻⁷	6.92
40	3.0 × 10 ⁻¹⁴	1.73 × 10 ⁻⁷	6.77
50	5.5 × 10 ⁻¹⁴	2.35 × 10 ⁻⁷	6.63

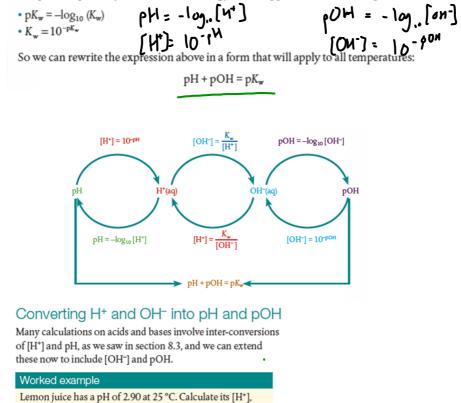
In other words, the pH of pure water is 7.00 only when the temperature is 298 K. Note that at temperatures above and below this, despite changes in the pH value, water is still a neutral substance as its $H^{+}(aq)$ concentration is equal to its $OH^{-}(aq)$ concentration. It does not become acidic or basic as we heat it and cool it respectively!

pH and pOH scales are inter-related

• pOH = -log₁₀ [OH⁻]; • [OH⁻] = 10^{-pOH} • pH = -log₁₀ [H⁺]; • [H⁺] = 10^{-рн}


K... = [4] [OH-]

From the relationship $[H^*]$ [OH⁻] = $K_w = 1.00 \times 10^{-14}$ at 298 K, it follows that


 $10^{-pH} \times 10^{-pOH} = 1.00 \times 10^{-14}$ at 298 K

By taking the negative logarithm to base 10 of both sides, we get

pH + pOH = 14.00 at 298 K

In the same way as the negative logarithms to base 10 of H⁺ and OH⁻ are known as pH and pOH respectively, the same terminology can be applied to K_w to derive pK_w .

T

[H⁺] = 10^{-pH} = 10^{-2.00} = 1.3 × 10⁻³ mol dm⁻³
 pH + pOH = 14.00 at 298 K, so pOH = 14.00 − 2.90 = 11.10

[OH⁻] = 10^{-pOH} = 10^{-11.10} = 7.7 × 10⁻¹² mol dm⁻³
 or K_w = [H⁺] [OH⁻] so 1.00 × 10⁻¹⁴ = (1.3 × 10⁻³) × [OH⁻]

 $[OH^{-}] = 7.7 \times 10^{-12} \, mol \, dm^{-3}$

29JK

[OH⁻], and pOH.

Solution

[Ht] = 10^{-ph} pH + pOH = 14.00

Strong acids and bases: pH and pOH can be deduced from their concentrations

OM THEIR CONCENTRATIONS					
Calculate the pH of the following at 298 K:					
a) 0.10 mol dm ⁻³ NaOH(aq) \longrightarrow [\circ N ⁻] = 0.10 rol dm ⁻³ b) 0.15 mol dm ⁻³ H ₂ SO ₄ (aq) \longrightarrow [n^+] = 0.30 rol Solution	<u>م</u>				
$ (n^{+}] = 0.30 \text{ mol} $	ک ر ا				
a) $NaOH(aq) \rightarrow Na^+(aq) + OH^-(aq)$ nitial (mol dm ⁻³) 0.10					
quilibrium (mol dm ⁻³) 0.10					
$OH = -\log_{10} (0.10) = 1.0$, therefore pH = 13.0					
b) $H_2SO_4(aq) \rightarrow 2H^+(aq) + SO_4^{2-}(aq)$ nitial (mol dm ⁻³) 0.15					
quilibrium (mol dm ⁻³) 0.30					
$H = -\log_{10}(0.30) = 0.52$					
Exercises					
22 At the temperature of the human body, 37 °C, the value of	fK = 2	4 × 10 ⁻¹⁴			
Calculate [H*], [OH ⁻], pH, pOH, and pK _w of water at this te			- hasic	or neutral?	,
23 The pH of a sample of milk is 6.77 at 298 K. Calculate its p					
acidic, basic, or neutral.		j, uno (on i j.			
24 Calculate the pH of the following solutions:					
(a) 0.40 m al data31101		<i>ф</i> И + .	И -	14	
(a) 0.40 mol dm ⁻³ HCl (b) 3.7 × 10 ⁻⁴ mol dm ⁻³ KOH → pOH =		р ^{0н} + 1	N =	14	
(a) 0.40 mol dm ⁻³ HCl (b) 3.7×10^{-4} mol dm ⁻³ KOH \longrightarrow pOH = (c) 5.0×10^{-5} mol dm ⁻³ Ba(OH) ₂	ntration	• •			
 (a) 0.40 mol dm⁻³ HCI (b) 3.7 × 10⁻⁴ mol dm⁻³ KOH → pOH = (c) 5.0 × 10⁻⁵ mol dm⁻³ Ba(OH)₂ 25 Which values are correct for a solution of NaOH of concernance 	ntration	• •			
 (a) 0.40 mol dm⁻³ HCl (b) 3.7 × 10⁻⁴ mol dm⁻³ KOH (c) 5.0 × 10⁻⁵ mol dm⁻³ Ba(OH)₂ 25 Which values are correct for a solution of NaOH of concer A [H[*]] = 1.0 × 10⁻² mol dm⁻³ and pH = 2.00 B [OH⁻] = 1.0 × 10⁻² mol dm⁻³ and pH = 12.00 		• •	m ⁻³ at 29	98 K?	1-3
 (a) 0.40 mol dm⁻³ HCl (b) 3.7 × 10⁻⁴ mol dm⁻³ KOH (c) 5.0 × 10⁻⁵ mol dm⁻³ Ba(OH)₂ 25 Which values are correct for a solution of NaOH of concer A [H[*]] = 1.0 × 10⁻² mol dm⁻³ and pH = 2.00 B [OH⁻] = 1.0 × 10⁻² mol dm⁻³ and pH = 12.00 C [H[*]] = 1.0 × 10⁻¹² mol dm⁻³ and pOH = 12.00 	22	0.010 mol dr [H*] = [OH ⁻] = pH = pOH = 6	m ⁻³ at 2; 1.55 × 1 3.81	98 K? I 0-7 mol dn	1-3
 (a) 0.40 mol dm⁻³ HCl (b) 3.7 × 10⁻⁴ mol dm⁻³ KOH → pOH = (c) 5.0 × 10⁻⁵ mol dm⁻³ Ba(OH)₂ 25 Which values are correct for a solution of NaOH of conce A [H⁺] - 1.0 × 10⁻² mol dm⁻³ and pH = 2.00 B [OH⁻] - 1.0 × 10⁻² mol dm⁻³ and pH = 12.00 C [H⁺] - 1.0 × 10⁻¹² mol dm⁻³ and pOH = 12.00 D [OH⁻] - 1.0 × 10⁻¹² mol dm⁻³ and pOH = 2.00 	22	0.010 mol dr [H ⁺] = [OH ⁻] = pH = pOH = 6 pH + pOH = p	m ⁻³ at 2; 1.55 × 1 3.81	98 K? I 0-7 mol dn]−3
 (a) 0.40 mol dm⁻³ HCl (b) 3.7 × 10⁻⁴ mol dm⁻³ KOH → pOH = (c) 5.0 × 10⁻⁵ mol dm⁻³ Ba(OH)₂ 25 Which values are correct for a solution of NaOH of conce A [H⁺] - 1.0 × 10⁻² mol dm⁻³ and pH - 2.00 B [OH⁻] - 1.0 × 10⁻² mol dm⁻³ and pH - 12.00 C [H⁺] - 1.0 × 10⁻¹² mol dm⁻³ and pOH - 12.00 D [OH⁻] - 1.0 × 10⁻¹² mol dm⁻³ and pOH - 2.00 	22	0.010 mol dr $[H^*] = [OH^-] =$ pH = pOH = 6 pH + pOH = p neutral	m ⁻³ at 2; 1.55 × 1 3.81	98 K? I 0-7 mol dn) ⁻³
 (a) 0.40 mol dm⁻³ HCl (b) 3.7 × 10⁻⁴ mol dm⁻³ KOH → pOH = (c) 5.0 × 10⁻⁵ mol dm⁻³ Ba(OH)₂ 25 Which values are correct for a solution of NaOH of conce A [H⁺] - 1.0 × 10⁻² mol dm⁻³ and pH - 2.00 B [OH⁻] - 1.0 × 10⁻² mol dm⁻³ and pH - 12.00 C [H⁺] - 1.0 × 10⁻¹² mol dm⁻³ and pOH - 12.00 D [OH⁻] - 1.0 × 10⁻¹² mol dm⁻³ and pOH - 2.00 	22 23	0.010 mol d $[H^*] = [OH^-] =$ pH = pOH = 6 pH + pOH = p neutral pOH = 7.23	m ⁻³ at 29 1.55 × 1 3.81 oK _w = 13	98 K? 10-7 mol dm .62	J-3
(a) 0.40 mol dm ⁻³ HCl (b) 3.7×10^{-4} mol dm ⁻³ KOH \rightarrow pOH = (c) 5.0×10^{-5} mol dm ⁻³ Ba(OH) ₂ 25 Which values are correct for a solution of NaOH of concer A [H ⁺] - 1.0×10^{-2} mol dm ⁻³ and pH - 2.00 B [OH ⁻] - 1.0×10^{-2} mol dm ⁻³ and pH - 12.00 C [H ⁺] - 1.0×10^{-12} mol dm ⁻³ and pOH - 12.00 D [OH ⁻] - 1.0×10^{-12} mol dm ⁻³ and pOH - 2.00 K _W = (H ⁺) [OH ⁻] = 2.4×10^{-14}	22 23	0.010 mol dr $[H^*] = [OH^-] =$ pH = pOH = 6 pH + pOH = p neutral pOH = 7.23 $[H^*] = 1.7 \times 10^{-10}$	m ⁻³ at 29 1.55 × 1 3.81 0K _w = 13 0 ⁻⁷ mol c	98 K? 10-7 moldm .62 dm-3) ^{_3}
(a) 0.40 mol dm ⁻³ HCl (b) 3.7×10^{-4} mol dm ⁻³ KOH \rightarrow pOH = (c) 5.0×10^{-5} mol dm ⁻³ Ba(OH) ₂ 25 Which values are correct for a solution of NaOH of concer A [H [*]] - 1.0×10^{-2} mol dm ⁻³ and pH - 2.00 B [OH ⁻] - 1.0×10^{-2} mol dm ⁻³ and pH - 12.00 C [H [*]] - 1.0×10^{-12} mol dm ⁻³ and pOH - 12.00 D [OH ⁻] - 1.0×10^{-12} mol dm ⁻³ and pOH - 2.00 K _W = (H ⁺) [OH ⁻] = 2.4×10^{-14}	22 23	0.010 mol d $[H^*] = [OH^-] =$ pH = pOH = 6 pH + pOH = p neutral pOH = 7.23	m ⁻³ at 29 1.55 × 1 3.81 0K _w = 13 0 ⁻⁷ mol c	98 K? 10-7 moldm .62 dm-3) ^{_3}
(a) 0.40 mol dm ⁻³ HCl (b) $3.7 \times 10^{-4} \text{ mol dm}^{-3} \text{ KOH} \longrightarrow \text{pOH} =$ (c) $5.0 \times 10^{-5} \text{ mol dm}^{-3} \text{ Ba}(\text{OH})_2$ 25 Which values are correct for a solution of NaOH of concer A $[H^*] - 1.0 \times 10^{-2} \text{ mol dm}^{-3} \text{ and pH} - 2.00$ B $[\text{OH}^-] - 1.0 \times 10^{-2} \text{ mol dm}^{-3} \text{ and pH} - 12.00$ C $[H^*] - 1.0 \times 10^{-12} \text{ mol dm}^{-3} \text{ and pOH} - 12.00$ D $[\text{OH}^-] - 1.0 \times 10^{-12} \text{ mol dm}^{-3} \text{ and pOH} - 2.00$ Ku = $[H^+] [OH^-] = 2.4 \text{ x} 10^{-14}$ $= 0 \text{ M} + 0 \text{ M} = 0 \text{ K}_1$	22 23	0.010 mol dr $[H^*] = [OH^-] =$ pH = pOH = 6 pH + pOH = p neutral pOH = 7.23 $[H^*] = 1.7 \times 10$ $[OH^-] = 5.9 \times$ acldlc	m ⁻³ at 29 1.55 × 1 3.81 0K _w = 13 0 ⁻⁷ mol c	98 K? 10-7 mol dm .62 dm-3 I dm-3	
(a) 0.40 mol dm ⁻³ HCl (b) 3.7×10^{-4} mol dm ⁻³ KOH \longrightarrow pOH = (c) 5.0×10^{-5} mol dm ⁻³ Ba(OH) ₂ 25 Which values are correct for a solution of NaOH of concer A [H ⁺] - 1.0×10^{-2} mol dm ⁻³ and pH - 2.00 B [OH ⁻] - 1.0×10^{-2} mol dm ⁻³ and pH - 12.00 C [H ⁺] - 1.0×10^{-12} mol dm ⁻³ and pOH - 12.00 D [OH ⁻] - 1.0×10^{-12} mol dm ⁻³ and pOH - 2.00 K _W = [H ⁺] (OH ⁻] = 2.4×10^{-14} $= 0^{-14}$ pH + pOH = pK _W	22 23 24	0.010 mol df $[H^*] = [OH^-] =$ pH = pOH = 6 pH + pOH = p neutral pOH = 7.23 $[H^*] = 1.7 \times 16$ $[OH^*] = 5.9 \times 100$	m ⁻³ at 29 1.55 × 1 3.81 0K _w = 13 0 ⁻⁷ mol c	98 K? 10-7 moldm .62 dm-3	
(a) 0.40 mol dm ⁻³ HCl (b) 3.7×10^{-4} mol dm ⁻³ KOH \longrightarrow pOH = (c) 5.0×10^{-5} mol dm ⁻³ Ba(OH) ₂ 25 Which values are correct for a solution of NaOH of concer A [H ⁺] - 1.0×10^{-2} mol dm ⁻³ and pH - 2.00 B [OH ⁻] - 1.0×10^{-2} mol dm ⁻³ and pH - 12.00 C [H ⁺] - 1.0×10^{-12} mol dm ⁻³ and pOH - 12.00 D [OH ⁻] - 1.0×10^{-12} mol dm ⁻³ and pOH - 2.00 K _W = [H ⁺] (OH ⁻] = 2.4×10^{-14} $= 0^{-14}$ pH + pOH = pK _W	22 23 24	0.010 mol dr $[H^*] = [OH^-] =$ pH = pOH = 6 pH + pOH = p neutral pOH = 7.23 $[H^*] = 1.7 \times 16$ $[OH^-] = 5.9 \times$ acldlc (a) 0.40 (c) 10.00	m ⁻³ at 29 1.55 × 1 3.81 0K _w = 13 0 ⁻⁷ mol c	98 K? 10-7 mol dm .62 dm-3 I dm-3	
(a) 0.40 mol dm ⁻³ HCl (b) 3.7×10^{-4} mol dm ⁻³ KOH \rightarrow pOH = (c) 5.0×10^{-5} mol dm ⁻³ Ba(OH) ₂ 25 Which values are correct for a solution of NaOH of concer A [H ⁺] - 1.0×10^{-2} mol dm ⁻³ and pH - 2.00 B [OH ⁻] - 1.0×10^{-2} mol dm ⁻³ and pH - 12.00 C [H ⁺] - 1.0×10^{-12} mol dm ⁻³ and pOH - 12.00 D [OH ⁻] - 1.0×10^{-12} mol dm ⁻³ and pOH - 2.00 K _W = $(H^+) [OH^-] = 2.4 \times 10^{-14}$	22 23 24	0.010 mol dr $[H^+] = [OH^-] =$ pH = pOH = 6 pH + pOH = p neutral pOH = 7.23 $[H^+] = 1.7 \times 10$ $[OH^-] = 5.9 \times$ acldlc (a) 0.40	m ⁻³ at 29 1.55 × 1 3.81 0K _w = 13 0 ⁻⁷ mol c	98 K? 10-7 mol dm .62 dm-3 I dm-3	
(a) 0.40 mol dm ⁻³ HCl (b) $3.7 \times 10^{-4} \text{ mol dm}^{-3} \text{ KOH} \longrightarrow pOH =$ (c) $5.0 \times 10^{-5} \text{ mol dm}^{-3} \text{ Ba}(OH)_2$ 25 Which values are correct for a solution of NaOH of concer A [H ⁺] = $1.0 \times 10^{-2} \text{ mol dm}^{-3} \text{ and pH} = 2.00$ B [OH ⁻] = $1.0 \times 10^{-2} \text{ mol dm}^{-3} \text{ and pH} = 12.00$ C [H ⁺] = $1.0 \times 10^{-12} \text{ mol dm}^{-3} \text{ and pOH} = 12.00$ D [OH ⁻] = $1.0 \times 10^{-12} \text{ mol dm}^{-3} \text{ and pOH} = 2.00$ Ku = $(H^+) [OH^-] = 2.4 \times 10^{-14}$ pH = pOH = pKu $(H^+)^2 = 2.4 \times 10^{-14}$	22 23 24	0.010 mol dr $[H^*] = [OH^-] =$ pH = pOH = 6 pH + pOH = p neutral pOH = 7.23 $[H^*] = 1.7 \times 16$ $[OH^-] = 5.9 \times$ acldlc (a) 0.40 (c) 10.00	m ⁻³ at 29 1.55 × 1 3.81 0K _w = 13 0 ⁻⁷ mol c	98 K? 10-7 mol dm .62 dm-3 I dm-3	
(a) 0.40 mol dm ⁻³ HCl (b) $3.7 \times 10^{-4} \text{ mol dm}^{-3} \text{ KOH} \longrightarrow pOH =$ (c) $5.0 \times 10^{-5} \text{ mol dm}^{-3} \text{ Ba}(OH)_2$ 25 Which values are correct for a solution of NaOH of concer A [H ⁺] = $1.0 \times 10^{-2} \text{ mol dm}^{-3} \text{ and pH} = 2.00$ B [OH ⁻] = $1.0 \times 10^{-2} \text{ mol dm}^{-3} \text{ and pH} = 12.00$ C [H ⁺] = $1.0 \times 10^{-12} \text{ mol dm}^{-3} \text{ and pOH} = 12.00$ D [OH ⁻] = $1.0 \times 10^{-12} \text{ mol dm}^{-3} \text{ and pOH} = 2.00$ Ku = $(H^+) = 1.0 \times 10^{-12} \text{ mol dm}^{-3} \text{ and pOH} = 2.00$ Ku = $(H^+) = 1.0 \times 10^{-12} \text{ mol dm}^{-3} \text{ and pOH} = 2.00$ Ku = $(H^+) = 1.0 \times 10^{-12} \text{ mol dm}^{-3} \text{ and pOH} = 2.00$ (c) $(H^+) = 1.0 \times 10^{-12} \text{ mol dm}^{-3} \text{ and pOH} = 2.00$ (c) $(H^+) = 1.0 \times 10^{-12} \text{ mol dm}^{-3} \text{ and pOH} = 2.00$ (c) $(H^+) = 1.0 \times 10^{-12} \text{ mol dm}^{-3} \text{ and pOH} = 2.00$ (c) $(H^+) = 1.0 \times 10^{-12} \text{ mol dm}^{-3} \text{ and pOH} = 2.00$	22 23 24	0.010 mol dr $[H^*] = [OH^-] =$ pH = pOH = 6 pH + pOH = p neutral pOH = 7.23 $[H^*] = 1.7 \times 16$ $[OH^-] = 5.9 \times$ acldlc (a) 0.40 (c) 10.00	m ⁻³ at 29 1.55 × 1 3.81 0K _w = 13 0 ⁻⁷ mol c	98 K? 10-7 mol dm .62 dm-3 I dm-3	
(a) 0.40 mol dm ⁻³ HCI (b) 3.7×10^{-4} mol dm ⁻³ KOH \rightarrow pOH = (c) 5.0×10^{-5} mol dm ⁻³ Ba(OH) ₂ 25 Which values are correct for a solution of NaOH of concer A [H ⁺] = 1.0×10^{-2} mol dm ⁻³ and pH = 2.00 B [OH ⁻] = 1.0×10^{-2} mol dm ⁻³ and pH = 12.00 C [H ⁺] = 1.0×10^{-12} mol dm ⁻³ and pOH = 12.00 D [OH ⁻] = 1.0×10^{-12} mol dm ⁻³ and pOH = 2.00 K _W = [H ⁺] [OH ⁻] = 2.4×10^{-14} $= 0^{-14}$ pH = pK _W	22 23 24	0.010 mol dr $[H^*] = [OH^-] =$ pH = pOH = 6 pH + pOH = p neutral pOH = 7.23 $[H^*] = 1.7 \times 16$ $[OH^-] = 5.9 \times$ acldlc (a) 0.40 (c) 10.00	m ⁻³ at 29 1.55 × 1 3.81 0K _w = 13 0 ⁻⁷ mol c	98 K? 10-7 mol dm .62 dm-3 I dm-3	

Dissociation c acids and bas	onstants express the strengthes	n of weak	
	d bases only partially dissociate, we c ial concentrations. So we must use e		
-	weak acid HA dissociating in water:		
$K_c = \frac{[H_1O^+][A^-]}{[HA][H_2O]}$	$HA(aq) + H_2O(i) \rightleftharpoons H_3O^*(aq) + A^-(aq)$ $HA \rightleftharpoons H^+ + A^-$		
Siven that the concen	stration of water is considered to be a consta	nt, we can combin	e
his with K_c to product $[H_2O] = \frac{[H_3O^*][A^-]}{[HA]}$	e a modified equilibrium constant known a:	s K ₄ .	
terefore $K_a = \frac{[H_3O^+]}{[H_3O^+]}$][A ⁻] Al		Note that the te
K _a is the acid	dissociation constant		Note that the te dissociation or is sometimes us interchangeably term acid lenks constant. You is comfortable to other terminoli.
	= more dissociation = stronger acid		constant. You comfortable to either terminole textbooks and o
ising the generic w			1012035 013
_ [BH*][OH-]	$(l) \rightleftharpoons BH^*(aq) + OH^-(aq)$		
Again we can comb	ine the constants to give a modified equilibr	ium constant K _b .	
$K_c[H_2O] = \frac{[BH^*][O]}{[B]}$			
Therefore $K_b = \frac{[BH]}{K_b}$ K_b is known as the b	[][OH_] [B] wase dissociation constant. It will have a fit	ted value for a	
particular base at a s	specified temperature.		
 K_b is the base A higher valu 	e dissociation constant . e = more dissociation = stronger bas	e	
Worked example Write the expression	is for $K_{\rm s}$ and $K_{\rm b}$ for the following acid and base.		
(a) CH ₃ COOH(aq) (b) NH ₃ (aq) Solution			
CHJCC	×××××××××××××××××××××××××××××××××××××	CH-doc	(ma)+ H30
Ka	= [H30] (CH3000]	-	
	$= \frac{[H_3O](H_3OO]}{[H_3OO]}$	- NK (~	N
- 1013	-61/10 = 01(1)	+ 10° 1y (~	۱/
Calculati	ons involving K _a and <i>I</i>	۲ _b	
Important points	trations are initial concentrations.		
 Concentration 	n values of pH/pOH/K ₂ /K ₅ must be e as been reached).	quilibrium conc	entrations (when
	t of dissociation is very small (very low	value for K _a or F	لى) it is
appropriate to u	se the approximations: [acid] _{lestal} ≈ [acid] _{equilibria}		
1 Calculation	$[b_{ase}]_{astal}$ ≈ $[b_{ase}]_{equilitria}$ of K_a and K_b from pH and initial co		
Worked example	for a 0.01 mol dm ⁻³ solution of ethanoic acid ((and the st
Solution		K4=	[(H500] [H30] [(H300H]
Write the equation § initial, change, and e given in the question	or the dissociation of the acid. Insert the data is equilibrium. As in Chapter 7, numbers in black n, numbers in blue have been derived.	n three rows: are data that were	
$\rm pH~3.4 \Longrightarrow [H^*] = 10^{-1}$	the [H ⁺] at equilibrium: ^{3,4} = 4.0 × 10 ⁻⁴ mol dm ⁻⁵		
	etry of the reaction we know that [H ¹] = [CH ₃ C CH ₃ COOH(aq) = CH ₃ COO ⁻ (aq) + H ⁺ (i 0.0] 0.00 0.0		0:0 0:0
initial (mol dm ⁻³) change (mol dm ⁻³) equilibrium (mol dn	-4 × 10 ⁻⁴ +4 × 10 ⁻⁴ +4 × 1	0 10** 0**	= 0.0
The approximation	$0.01 \approx 0.01 - (4 \times 10^{-9})$ is valid within the precis	ion of this data.	
Write the expression $K_{*} = \frac{[CH_{*}COO^{-}][H^{*}]}{[CH_{*}COO^{-}][H^{*}]}$	n for K _k and substitute the equilibrium values. "] = $\frac{(4 \times 10^{-6})^2}{0.01} = 1.6 \times 10^{-5}$		
Worked example	a 0.100 mol dm ⁻⁹ solution of methylamine, C		
Calculate the K _b for pH is 11.80 at this t Solution	$ \begin{array}{l} 100 \text{ mol dm}^{-3} \text{ solution of methylamine, C} \\ \text{emperature,} \\ \text{M} = 2.20 \\ \text{P} \\ \text{M} + \text{P} \\ \text{O} \\ \text{M} = 1 \end{array} $		[(H3M43+) [(H3NH3+)
	$H + pOH = 14.00$. Therefore pH 11.80 \implies pOH	= 2.20	LCM3NM
	netry of the reaction $[OH^*] = [CH_3NH_5^*]$ $CH_3NH_2(aq) + H_2O(l) \rightleftharpoons CH_3NH_5^*]$	(aq) + OH ⁻ (aq)	
initial (mol dm ⁻¹) change (mol dm ⁻¹) equilibrium (mol d	0.000 0.000	0.000	
	H [*]] (0.00630) ² (33104	000030	
Worked examp	n of [H*] and pH, [OH ⁻] and pOH fi ເວ		pM=-log[f
temperature. Wh	solution of ethanoic acid has a value for $K_{a} = 1.3$ at is its pH at this temperature? $CH_{3}CO$	oH	
To calculate pH w dissociation of th	ve need to know [H"] at equilibrium, and theret e acid that has occurred: this is the 'change' am	ore the amount of ount in the reaction	
So let the change Therefore change	in concentration of $CH_3COOH = -x$ in concentration of CH_3COO^- and $H^* = +x$		
initial (mol dm-*) change (mol dm-*	$CH_3COOH(aq) \approx CH_3COO^{-}(aq) + 1$ 0.75 0.00 $\eta = -x + x$	H"(sq) 0.00 +x	
equilibrium (mol	dm ⁻⁹) 0.75 - x x ~ 0.75	*	
valid to approxim	II, x, the amount of dissociation, is also extreme sate [CH ₃ COOH] _{annal} ≈ [CH ₃ COOH] _{equilition} .	dy small and it is	
$K_a = \frac{[CH_3COO]}{[CH_3COO]}$ Therefore $x = \sqrt{1}$.	$\frac{[H^2]}{[H]} = \frac{x^2}{0.75} = 1.8 \times 10^{-5}$ $\frac{8 \times 10^{-5} \times 0.75}{8 \times 10^{-5} \times 0.75} = 3.7 \times 10^{-5}$		
[H*] = 3.7 × 10 ⁻³ :			
Worked examp	ko		
A 0.20 mol dm ⁻³ its pHP Solution	aqueous solution of ammonia has K_b of 1.8×10^{-1} $NH_3 + H_2 O \iff NH_4$	at 298 K. What is	
Let the change in	concentration of $NH_{h} = -x$ in concentration of NH_{4}^{+} and $OH^{+} = +x$		
initial (mol dm ⁻²)	$NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^*(aq) + O$ 0.20 0.00	H=(aq) 0.00	
change (mol dm- equilibrium (mol	= 0.20	x	
As K _b is very sma valid to approxim	II, x the amount of dissociation is also extremely rate [NH ₃] _{sistat} = [NH ₃] _{equilition}	imall, and so it is	
$K_{b} = \frac{ v _{4} OH }{ NH_{b} }$ Therefore $x = \sqrt{1}$	$\frac{[]}{8 \times 10^{-5} \times 0.20} = 1.9 \times 10^{-5}$	1 + pH =	pki
[OH ⁻] = 1.9 × 10 ⁻ pOH = -log ₁₀ (1.5	y y × 10−% = 2.72		14
	K, pH = 14.00 - 2.72 = 11.28		1
	a, pri - 1400 - 202 - 1120		
	A, p11-1400-202-1120		
	A, (11 - 1400 - 20 2 - 1120		
	n pri - 1000 - 202 - 1120		
	n (11 - 1400 - 27 2 - 1120		

$PK_a = -10^{-10}$	- V.	=-101, [.]		-C 0-M	
$K_{a} = 10$	β ₁₀ K ₂ ; ^K ,	= [N+]	• $p_{K_b} = -10g_{10}$ • $K_b = 10^{-pK_b}$	Δ _b ; Ψ	
Acid	Formula	Ka	рКа	-c'o- "	
methanoic	нсоон	1.8 × 10 ⁻⁴	3.75 4.76	Wenk	
ethanoic propanoic	CH ₃ COOH C ₂ H ₅ COOH	1.4 × 10 ⁻⁵	4.87	/ 0000	
Base	Formula NHa	К _ь 1.8 × 10 ⁻⁵	р <i>К</i> ь 4.75	Weak	
methylamine ethylamine	CH ₃ NH ₂ C ₂ H ₅ NH ₂	4.6 × 10 ⁻⁴ 4.5 × 10 ⁻⁴	3.34	bases	
				/	
	onship between K _a a or bases with higher v				
ST	RONG ACID		STRONG BASE		
	ses pK _a increases	K _b in	creases pK _b incre	ases	
W	ÆAK ACID		WEAK BASE		
	etween K _a and	$K_{\rm b}$, p $K_{\rm a}$ and p	pK_b for a		
conjugate pair Consider the K _a ar	nd K _b expressions i	for a conjugate ac	id–base pair HA	and A⁻.	
IA(aq) ≓ H*(aq)	+ A-(aq) K _a =	[H ⁺][A ⁻] [HA]	-		
	HA(aq) + OH⁻(aq	L J	[OH-]		
		,	,		
$K_a \times K_b = \frac{[H^*][A^-]}{[HA]}$ herefore $K_a \times K_b$	= [H ⁺] × [OH ⁻] = k	, ku=	[N][OH]	7	
y taking negativ	e logarithms of bo		AH.	() - LI	
$K_a + pK_b = pK_w$ At 298 K, $K_w = 1.0$	0 × 10 ⁻¹⁴ so pK _w =	14.00	P., +	port = 14	
herefore pK _a + p	K _b = 14.00 at 298 I	c			
ligh K₄ of conjuga	ate acid> Lower	K _b of conjugate t	base (and vice-ver	rsa)	
Acid		ise			
trongest acid HCIO HCI ↑ H,sO	a	04 weakest bo - S04	ase		
increasing H ₃ O+ acid CH ₃ C strength H ₂ S	н	20 increasing H3COO- base			
NH ₄ H ₂ O	N	H,	рИ = -	-loy[11*]	
rcises	Ha =	- H+ + A	10-14 =	[A*]	
A weak acid HA has acid?	a pK _a of 4.92. What	will be the [H*] and	IpH of a 0.030 mol	dm ⁻³ solution of this	
	ship between K _a and			s. 1	
A) pK _a = -log K _a		K	a. Ko = Ku	- 1×10	
1.0×10-1	-			1 0398 L	
1.0×10-1	- pk;-4-79	k1=10.83 pk	* + pk = p	k. @298k =14	
B $pK_a = \frac{1.0 \times 10^{-1}}{K_a}$ C $pK_a = \log K_a$ D $pK_a = \frac{1.0}{K_a}$ The pK _a of HCN is S	pK:- 4-79 7 2.21 and that of <u>HE is</u>	3.17. Which is the	stronger acid?	k. @298k =14	
B $pK_a = \frac{1.0 \times 10^{-1}}{K_a}$ C $pK_a = \log K_a$ D $pK_a = \frac{1.0}{K_a}$ The pK_a of HCN is S cook at the data in 1 (a) The pK_a of etha	PK 4-79 A 2.21 and that of <u>HE is</u> Q34. What are the pi noic acid, CH ₃ COOF	3.17. Which is the K _b values o <u>f CN</u> ⁻ and	stronger acid? d F`? Which is the s	k_ @298 k = 14 tronger base?	
B $pK_a = \frac{1.0 \times 10^{-1}}{K_a}$ C $pK_a = \log K_a$ D $pK_a = \frac{1.0}{K_a}$ The pK_a of HCN is 5 cook at the data in 1 (a) The pK_a of ethal CH ₃ CO? 7 (b) The pK_a of meth	$pk_i - 4 - 79$ j_i 21 and that of <u>HE is</u> Q34. What are the pi noic acid, CH_3COOH $h_4 = 9 - 24$ hanoic acid, HCOOH	3.17. Which is the K _b values o <u>f CN⁻ an</u> H, at 298 K is 4.76. V	stronger acid? d F`? Which is the s What is the pK _b of it	k Q298 k = 14 tronger base? is conjugate base	
B $pK_{a} = \frac{1.0 \times 10^{-1}}{K_{a}}$ C $pK_{a} = \log K_{a}$ D $pK_{a} = \frac{1.0}{K_{a}}$ The pK_{a} of HCN is 5 cook at the data in 11 (a) The pK_{a} of etha $CH_{a}COC7$ (b) The pK_{a} of metithan that of eth	$pk_i - 4 - 79$ j_i 21 and that of <u>HE is</u> Q34. What are the pi noic acid, CH_3COOH $h_4 = 9 - 24$ hanoic acid, HCOOH	(3.17. Which is the K ₆ values o <u>f CN</u> ⁻ and H, at 298 K is 4.76. V H, at 298 K is 3.75. Is -2S 32	stronger acid? d F'? Which is the s What is the pK _b of it s its conjugate base pH = 3.22; [H ⁺] =	k Q298 k = 14 tronger base? is conjugate base	
B $pK_{a} = \frac{1.0 \times 10^{-1}}{K_{a}}$ C $pK_{a} = \log K_{a}$ D $pK_{a} = \frac{1.0}{K_{a}}$ D $pK_{a} = \frac{1.0}{K_{a}}$ 	$pk_{1}^{-} + 4.79$ p_{2}^{-} and that of <u>HE is</u> q_{34} . What are the pi noic acid, $CH_{3}COOH$ $p_{4}^{-} = 9.24$ hanoic acid, HCOOH anoic acid?	<u>3.17</u> . Which is the ζ ₆ values o <u>f CN</u> ⁻ and H, at 298 K is 4.76. V H, at 298 K is 3.75. Is	stronger acid? d F ⁻ ? Which is the s What is the pK _b of it s its conjugate base	k @278 k = 14 tronger base? s conjugate base weaker or stronger • 6.0 × 10 ⁻⁴ mol dm ⁻³	
B $pK_{a} = \frac{1.0 \times 10^{-1}}{K_{a}}$ C $pK_{a} = \log K_{a}$ D $pK_{a} = \frac{1.0}{K_{a}}$ D $pK_{a} = \frac{1.0}{K_{a}}$	$pk_{1}^{-} + 4.79$ p_{2}^{-} and that of <u>HE is</u> Q_{34} . What are the pi noic acid, $CH_{3}COOH$ b $k_{1} = 9.24$ hanoic acid, HCOOH anoic acid?	3.17. Which is the K ₅ values of <u>CN</u> ⁻ and H, at 298 K is 4.76. V H, at 298 K is 3.75. Is -2S 32 33	stronger acid? d F'? Which is the s What is the pK ₀ of it s its conjugate base $pH = 3.22; [H^{+}] = A$ HF is the stronge $pK_{b}CN^{-} = 4.79;$	k. $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	
$\begin{array}{c} \mathbf{B} \mathbf{p} \mathbf{K}_s - \frac{1.0 \times 10^{-1}}{\mathbf{K}_s} \\ \mathbf{C} \mathbf{p} \mathbf{K}_s - \log \mathbf{K}_s \\ \mathbf{D} \mathbf{p} \mathbf{K}_s - \frac{1.0}{\mathbf{K}_s} \\ \mathbf{D} \mathbf{p} \mathbf{K}_s - \frac{1.0}{\mathbf{K}_s} \\ \mathbf{D} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{O} \mathbf{s} \\ \mathbf{N} \mathbf{s} \mathbf{c} \mathbf{s} \\ \mathbf{D} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{O} \mathbf{s} \\ \mathbf{n} \mathbf{s} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{p} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{O} \mathbf{s} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{p} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{O} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{p} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{p} \mathbf{k}_s \mathbf{q} + \mathbf{I} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \mathbf{n} \\ \mathbf{n}$	pk: 4-79 pk: 4-79 plant that of <u>HE is</u> Q34. What are the pl noic acid, CH ₂ COO $k_{1} = 9.24$ hanoic acid, HCOOH anoic acid? wice acid = (0)	(3.17. Which is the K ₆ values of CN ⁻ and 4, at 298 K is 4.76. V 4, at 298 K is 3.75. Is 32 33 34 35	stronger acid? d F? Which is the s What is the pK ₀ of it is its conjugate base pH = 3.22; [H ⁺] = A HF is the stronge pK ₀ CN = 4.79; CN ⁺ is the stronge (a) pK ₀ CH ₂ COC	k. $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	
$\begin{array}{c} \mathbf{B} \mathbf{p} \mathbf{K}_s - \frac{1.0 \times 10^{-1}}{\mathbf{K}_s} \\ \mathbf{C} \mathbf{p} \mathbf{K}_s - \log \mathbf{K}_s \\ \mathbf{D} \mathbf{p} \mathbf{K}_s - \frac{1.0}{\mathbf{K}_s} \\ \mathbf{D} \mathbf{p} \mathbf{K}_s - \frac{1.0}{\mathbf{K}_s} \\ \mathbf{D} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{O} \mathbf{s} \\ \mathbf{N} \mathbf{s} \mathbf{c} \mathbf{s} \\ \mathbf{D} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{O} \mathbf{s} \\ \mathbf{n} \mathbf{s} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{p} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{O} \mathbf{s} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{p} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{O} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{p} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{p} \mathbf{k}_s \mathbf{q} + \mathbf{I} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \mathbf{n} \\ \mathbf{n}$	pk: 4-79 pk: 4-79 plant that of <u>HE is</u> Q34. What are the pl noic acid, CH ₂ COO $k_{1} = 9.24$ hanoic acid, HCOOH anoic acid? wice acid = (0)	(3.17. Which is the K ₆ values of CN ⁻ and 4, at 298 K is 4.76. V 4, at 298 K is 3.75. Is 32 33 34 35	stronger acid? d F? Which is the s What is the pK_0 of it is its conjugate base pH = 3.22; [H'] = A HF is the stronge $pK_0 CN^- = 4.79;$ CN' is the strong (a) $pK_0 CN' = 4.79;$ (b) Methanolc a ethanolc ack	k. $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	
$\begin{array}{c} \mathbf{B} \mathbf{p} \mathbf{K}_s - \frac{1.0 \times 10^{-1}}{\mathbf{K}_s} \\ \mathbf{C} \mathbf{p} \mathbf{K}_s - \log \mathbf{K}_s \\ \mathbf{D} \mathbf{p} \mathbf{K}_s - \frac{1.0}{\mathbf{K}_s} \\ \mathbf{D} \mathbf{p} \mathbf{K}_s - \frac{1.0}{\mathbf{K}_s} \\ \mathbf{D} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{O} \mathbf{s} \\ \mathbf{N} \mathbf{s} \mathbf{c} \mathbf{s} \\ \mathbf{D} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{O} \mathbf{s} \\ \mathbf{n} \mathbf{s} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{p} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{O} \mathbf{s} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{p} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{O} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{p} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{p} \mathbf{k}_s \mathbf{q} + \mathbf{I} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \mathbf{n} \\ \mathbf{n}$	pk: 4-79 pk: 4-79 plant that of <u>HE is</u> Q34. What are the pl noic acid, CH ₂ COO $k_{1} = 9.24$ hanoic acid, HCOOH anoic acid? wice acid = (0)	(3.17. Which is the K ₆ values of CN ⁻ and 4, at 298 K is 4.76. V 4, at 298 K is 3.75. Is 32 33 34 35	stronger acid? d F? Which is the s What is the pK_0 of it is its conjugate base pH = 3.22; [H'] = A HF is the stronge $pK_0 CN^- = 4.79;$ CN' is the strong (a) $pK_0 CN' = 4.79;$ (b) Methanolc a ethanolc ack	k. $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	
$\begin{array}{c} \mathbf{B} \mathbf{p} \mathbf{K}_s - \frac{1.0 \times 10^{-1}}{\mathbf{K}_s} \\ \mathbf{C} \mathbf{p} \mathbf{K}_s - \log \mathbf{K}_s \\ \mathbf{D} \mathbf{p} \mathbf{K}_s - \frac{1.0}{\mathbf{K}_s} \\ \mathbf{D} \mathbf{p} \mathbf{K}_s - \frac{1.0}{\mathbf{K}_s} \\ \mathbf{D} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{O} \mathbf{s} \\ \mathbf{N} \mathbf{s} \mathbf{c} \mathbf{s} \\ \mathbf{D} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{O} \mathbf{s} \\ \mathbf{n} \mathbf{s} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{p} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{O} \mathbf{s} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{p} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{O} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{p} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{p} \mathbf{k}_s \mathbf{q} + \mathbf{I} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \mathbf{n} \\ \mathbf{n}$	pk: 4-79 pk: 4-79 plant that of <u>HE is</u> Q34. What are the pl noic acid, CH ₂ COO $k_{1} = 9.24$ hanoic acid, HCOOH anoic acid? wice acid = (0)	(3.17. Which is the K ₆ values of CN ⁻ and 4, at 298 K is 4.76. V 4, at 298 K is 3.75. Is 32 33 34 35	stronger acid? d F? Which is the s What is the pK_0 of it is its conjugate base pH = 3.22; [H'] = A HF is the stronge $pK_0 CN^- = 4.79;$ CN' is the strong (a) $pK_0 CN' = 4.79;$ (b) Methanolc a ethanolc ack	k. $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	
$\begin{array}{c} \mathbf{B} \mathbf{p} \mathbf{K}_s - \frac{1.0 \times 10^{-1}}{\mathbf{K}_s} \\ \mathbf{C} \mathbf{p} \mathbf{K}_s - \log \mathbf{K}_s \\ \mathbf{D} \mathbf{p} \mathbf{K}_s - \frac{1.0}{\mathbf{K}_s} \\ \mathbf{D} \mathbf{p} \mathbf{K}_s - \frac{1.0}{\mathbf{K}_s} \\ \mathbf{D} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{O} \mathbf{s} \\ \mathbf{N} \mathbf{s} \mathbf{c} \mathbf{s} \\ \mathbf{D} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{O} \mathbf{s} \\ \mathbf{n} \mathbf{s} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{p} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{O} \mathbf{s} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{p} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{O} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{p} \mathbf{p} \mathbf{K}_s \mathbf{q} + \mathbf{I} \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{p} \mathbf{k}_s \mathbf{q} + \mathbf{I} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \mathbf{n} \\ \mathbf{n} \\ \mathbf{n} \mathbf{n} \\ \mathbf{n}$	pk: 4-79 pk: 4-79 plant that of <u>HE is</u> Q34. What are the pl noic acid, CH ₂ COO $k_{1} = 9.24$ hanoic acid, HCOOH anoic acid? wice acid = (0)	(3.17. Which is the K ₆ values of CN ⁻ and 4, at 298 K is 4.76. V 4, at 298 K is 3.75. Is 32 33 34 35	stronger acid? d F? Which is the s What is the pK_0 of it is its conjugate base pH = 3.22; [H'] = A HF is the stronge $pK_0 CN^- = 4.79;$ CN' is the strong (a) $pK_0 CN' = 4.79;$ (b) Methanolc a ethanolc ack	k. $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	
B $pK_{s} = \frac{1.0 \times 10^{-1}}{K_{s}}$ C $pK_{s} = \log K_{s}$ D $pK_{s} = \frac{1.0}{K_{s}}$ The pK_{s} of HCN is 5 Look at the data in 1 (a) The pK_{s} of HCN is 5 Look at the data in 1 (b) The pK_{s} of methy than that of ethy than that of ethy pK_{b} notwo	pk: 4-79 pk: 4-79 plant that of <u>HE is</u> Q34. What are the pl noic acid, CH ₂ COO $k_{1} = 9.24$ hanoic acid, HCOOH anoic acid? wice acid = (0)	(3.17. Which is the K ₆ values of CN ⁻ and 4, at 298 K is 4.76. V 4, at 298 K is 3.75. Is 32 33 34 35	stronger acid? d F? Which is the s What is the pK_0 of it is its conjugate base pH = 3.22; [H'] = A HF is the stronge $pK_0 CN^- = 4.79;$ CN' is the strong (a) $pK_0 CN' = 4.79;$ (b) Methanolc a ethanolc ack	k. $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	
B $pK_{s} = \frac{1.0 \times 10^{-1}}{K_{s}}$ C $pK_{s} = \log K_{s}$ D $pK_{s} = \frac{1.0}{K_{s}}$ The pK_{s} of HCN is 5 Look at the data in 1 (a) The pK_{s} of HCN is 5 Look at the data in 1 (b) The pK_{s} of methy than that of ethy than that of ethy pK_{s} n rOh_{roh}	pk: 4-79 pk: 4-79 plant that of <u>HE is</u> Q34. What are the pl noic acid, CH ₂ COO $k_{1} = 9.24$ hanoic acid, HCOOH anoic acid? wice acid = (0)	(3.17. Which is the K ₆ values of CN ⁻ and 4, at 298 K is 4.76. V 4, at 298 K is 3.75. Is 32 33 34 35	stronger acid? d F? Which is the s What is the pK_0 of it is its conjugate base pH = 3.22; [H'] = A HF is the stronge $pK_0 CN^- = 4.79;$ CN' is the strong (a) $pK_0 CN' = 4.79;$ (b) Methanolc a ethanolc ack	k. $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	
B $pK_{s} = \frac{1.0 \times 10^{-1}}{K_{s}}$ C $pK_{s} = \log K_{s}$ D $pK_{s} = \frac{1.0}{K_{s}}$ The pK_{s} of HCN is 5 Look at the data in 1 (a) The pK_{s} of HCN is 5 Look at the data in 1 (b) The pK_{s} of methy than that of ethy than that of ethy pK_{s} n rOh_{roh}	pk: 4-79 pk: 4-79 plant that of <u>HE is</u> Q34. What are the pl noic acid, CH ₂ COO $k_{1} = 9.24$ hanoic acid, HCOOH anoic acid? wice acid = (0)	(3.17. Which is the K ₆ values of CN ⁻ and 4, at 298 K is 4.76. V 4, at 298 K is 3.75. Is 32 33 34 35	stronger acid? d F? Which is the s What is the pK_0 of it is its conjugate base pH = 3.22; [H'] = A HF is the stronge $pK_0 CN^- = 4.79;$ CN' is the strong (a) $pK_0 CN' = 4.79;$ (b) Methanolc a ethanolc ack	k. $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	
The pK, of HCN is S Look at the data in 1 (1) The pK, of etha CH,COO7 / (1) The pK, of etha CH,COO7 / (1) The pK, of etha (1)	$\begin{array}{c} pk_{1}^{*} 4 - 79 \\ p \\ a \\ 21 and that of LEE \\ 234. What are the pi \\ 244. What are the pi \\ 245. e \\ 29. 24 \\ 1400 anole add, HCOOH anole add, HCOO$	(3.17, Which is the G values of CN ² and 4, at 298 K is 4.76. V 4, at 298 K is 3.75. Is 2S 32 33 34 35 39 100 36 36 36 36	stronger acid? d F? Which is the s What is the pK_0 of it is its conjugate base pH = 3.22; [H'] = A HF is the stronge $pK_0 CN^- = 4.79;$ CN' is the strong (a) $pK_0 CN' = 4.79;$ (b) Methanolc a ethanolc ack	k. $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	
B $pK_{x} = \frac{1.0 \times 10^{-1}}{K_{x}}$ C $pK_{x} = \log K_{x}$ D $pK_{x} = \frac{10}{K_{x}}$ The pK_{y} of HCN is 5 Look at the data in 1 (a) The pK_{y} of met than the of eth than that of eth than than than than than than than than	$\begin{array}{c} pk_{1}^{*} 4 - 79 \\ p \\ a \\ 21 and that of LEE \\ 234. What are the pi \\ 244. What are the pi \\ 245. e \\ 29. 24 \\ 1400 anole add, HCOOH anole add, HCOO$	(3.17, Which is the G values of CN ² and 4, at 298 K is 4.76. V 4, at 298 K is 3.75. Is 2S 32 33 34 35 39 100 36 36 36 36	stronger acid? d F? Which is the s What is the pK_0 of it is its conjugate base pH = 3.22; [H'] = A HF is the stronge $pK_0 CN^- = 4.79;$ CN' is the strong (a) $pK_0 CN' = 4.79;$ (b) Methanolc a ethanolc ack	k. $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	
$B = pK_{s} - \frac{10 \times 10^{-1}}{K_{s}}$ $C = pK_{s} - \log K_{s}$ $D = pK_{s} - \frac{10}{K_{s}}$ $D = pK_{s} - \frac{10}{K_{s$	pk: 4-79 A 121 and that of <u>HE is</u> 234. What are the pi noic add, CHCOOL anoic add, HCOOL anoic A	13.17. Which is the G values of CM ² and 4. at 298 K is 375. Is 725 32 33 34 35 36 36 4. at 298 K is 375. Is 36 37 4. at 298 K is 375. Is 37 38 39 100 action 36 4. at 298 K is 375. Is 36 37 36 36 36 36 36 36 36 36 36 36	stronger acid? d F? Which is the s What is the pK_0 of it is its conjugate base pH = 3.22; [H'] = A HF is the stronge $pK_0 CN^- = 4.79;$ CN' is the strong (a) $pK_0 CN' = 4.79;$ (b) Methanolc a ethanolc ack	k. $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	
$\frac{3}{K_{s}} = \frac{10 \times 10^{-1}}{K_{s}}$ $= pK_{s} - \log K_{s}$ $= pK_{s} - \log K_{s}$ $= pK_{s} - 10 K_{s}$ $= pK_{s} - 1 + CN is S$ $= 0 K_{s} - 1 + CN$	$\begin{array}{c} pk_{1}^{*} 4 - 79 \\ p \\ a \\ 21 and that of HE 18 \\ 234. What are the p \\ 244. What are the p \\ 246. p - 24 \\ 246. p - 246. $	13.17. Which is the G values of CM ² and 4. at 298 K is 375. Is 725 32 33 34 35 36 36 4. at 298 K is 375. Is 36 37 4. at 298 K is 375. Is 37 38 39 100 action 36 4. at 298 K is 375. Is 36 37 36 36 36 36 36 36 36 36 36 36	stronger acid? d F? Which is the s What is the pK_0 of it is its conjugate base pH = 3.22; [H'] = A HF is the stronge $pK_0 CN^- = 4.79;$ CN' is the strong (a) $pK_0 CN' = 4.79;$ (b) Methanolc a ethanolc ack	k. $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	
$\begin{array}{c} pk_{s} - \frac{10 \times 10^{\circ}}{K_{s}} \\ pk_{s} - \log k_{s} \\ pk_{s} - \log k_{s} \\ pk_{s} - \frac{10}{K_{s}} \\ pk_{s} - \frac{10}{K_{s}} \\ pk_{s} \\ of HCN k_{s} \\ of k_{s} \\ of k_{s} \\ pk_{s} \\ of k_{s} \\ pk_{s} \\ $	pk: 4-79 A 121 and that of <u>HE is</u> 234. What are the pi noic add, CHCOOL anoic add, HCOOL anoic A	13.17. Which is the G values of CM ² and 4. at 298 K is 375. Is 725 32 33 34 35 36 36 4. at 298 K is 375. Is 36 37 4. at 298 K is 375. Is 37 38 39 100 action 36 4. at 298 K is 375. Is 36 37 36 36 36 36 36 36 36 36 36 36	stronger acid? d F? Which is the s What is the pK_0 of it is its conjugate base pH = 3.22; [H'] = A HF is the stronge $pK_0 CN^- = 4.79;$ CN' is the strong (a) $pK_0 CN' = 4.79;$ (b) Methanolc a ethanolc ack	k. $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} $	

	annu. and the importance of buffers, is is useful to see how added acid or alkali eff of a non-buffered solution. This is shown below.
	1.dm) toter at 298 E pH 7 → pH 4 → pH 4
The 2 n	nain types - those that maintain an acidic solution and those that maintain a basic ffer solutions are made using a mixture of 2 solutions that between them contain
one. ви a conjų	ner solutions are made using a mixture of 2 solutions that between them contain gate acid-base pair.
Compo	Sic Euffors Sition of the buffer solution mining an action of its solution of its solution is
strong all	mining an aquecus solution of a weak acid with a solution of its salt of a solil. For example: CH5(COOH6)a) and NsCH5(CO0)a) weak acid with weak acid with annay adult
	<pre>wing equilibria exist in a solution of this mixture: (i) CH₂COOH(aq) == CH₂COO·(aq) + H[*](aq)</pre>
	(iii) weak sids so equilibrium lines to the left. (iii) NaCH ₂ COQ(a ₂) → Na ⁺ (a ₂) = CH ₂ COO ⁺ (a ₂) (a ₂) is a oblible side, so is fully discussing of solution.
So the mi	stare contains relatively high concentrations of both CH ₂ COOH and that is an aod and its conjugate base. These can be considered as treservoirs', east with hadded OHT and H* respectively in neutrilation reactions.
 Addition 	nse to added acid and base
mos	rill combine with the base CH ₂ COO* to form CH ₂ COOH, therefore removing t of the added H*. C <mark>H₂COO*(aq) + H*(r(q) ≈ CH₂COOH(aq)</mark>
 Additis OH[*] 	en of base (OIT): "will combine with the acid CH/COOH to form CH/COO" and H ₂ O, so oring most of the OIT. CH/COOH(a) + OH*(a) =: CH/COO*(a) + H ₂ O()
Compo Made by	sic buffers solution mixing an aquecess solution of a weak base with its salt of a strong scid. For
example:	NH ₂ (sq) and NH ₄ Cl(sq) weakbase add of weakbase
The foll	owing equilibria exist in solution:
NH3(aq)	 (i) NH₂(aq) + H₂(0) ≃ NH₄[*](aq) + OH[*](aq)) is a weak base, so equilibrium lies to the left. (ii) NH₄(C(aq) → NH₄[*](aq) + CT[*](aq)
So here	a) is a soluble salt, so is fully dissociated in solution. the mixture contains relatively high concentrations of both NH ₁ (ac) and
NH4*(ac reservoi reactior	η) – that is a base and its conjugate acid. These species will again act as irs, ready to react with added H* and OH* respectively in neutralization
 Addit 	onse of buffer to added acid or alkali ion of مذل کار:
ada	will combine with the base NH, to form NH_4^ , therefore removing most of the ded H '. $\label{eq:NH} NH_4(aq) + H^+ = NH_4^+(aq)$
OF	ion of base (OHT): It will combine with the acid NH4* and form NH3 and H2O, so removing most the OHT.
	$NH_{4}^{*}(ag) + OH^{*}(ag) \approx NH_{4}(ag) + H_{2}O(l)$
	ng buffer solutions of a buffer is determined by the interactions of its components. Specifically is
depend 1 the	is on: pK, or pK, of its acid or base; ratio of the initial concentrations of acid and salt, or base and salt, used in its
pre	paration.
 mixes 	solutions can be prepared by starting with an acid or base that has a pK ₄ or pK ₄ a close as possible to the required pH or pOH of the buffer. This is then either: 4 with a solution of a salt containing its conjugate or 100 meturiAized by a strong base or acid
The net	utralization reaction should ensure that approximately one half of the
illustra	ted below using simple mole ratios.
final ar	souring reaction11 -1 -1 socurits in moles 1 0 1 1 all mixture, containing equal amounts of the weak acid CH.COOH and its salt
NaCH,	COO, is a buffer solution. Equal arounds of a canjugula
dissol (a) 0.	whether each of the following mixtures will form a buffer solution when red in 10.0m ² of water. Janne NNHCO, and Janne NN ₂ CO ₂ \star N_3 PO_4 \pm N_4 O_4 P_4 $+$ H_2 O_2 20 mol CH ₂ COOH and 0.10 mol HCI \times 0.10 6.20 6
(c) 0.	20 mol CH ₂ COOH and 0.10 mol HCl × 0-10 0-20 6 0 20 mol NH ₂ and 0.10 mol HCl ✓ 0 0-10 0-10 0-10
Solu	tion obtain contains HCO ₂ ⁻⁺ a conjugate pair, so it is a buffer.
(a) S	
(b) S- (c) N u	olution contains two acids – it is not a buffer. High and HC1 reast (significant of the second of t
(b) Se (c) N u	olution contains two scales — It is not a buffer. I fail of IC sears together forming (20 not 8) Not (21 and 0.10 not 8)Ns processed it is a buffer. (20 a, and Net80 in search signature forming 0.20 not 8 No (40 °C).
(b) Se (c) N u	H3 and HCl react together forming 0.10 mol NH4Cl and 0.10 mol NH5 nreacted; it is a buffer.
(b) Se (c) N u	H3 and HCl react together forming 0.10 mol NH4Cl and 0.10 mol NH5 nreacted; it is a buffer.
(b) Si (c) N (d) H Exercis 27 Who	H ₂ and HCI next together forming 0.00 mol NH ₂ CI and 0.10 mol NH ₃ mercels it is a blind pPO ₄ and NicOI reset together forming 0.20 mol No ₂ HO ₀ .
(b) Se (c) N (d) H (d) H	Bits, and HCT carest together forming (0.20 mol NH)CL and 0.10 mol NH); metch is it is holding. (PC), and NKOH result together forming (0.20 mol Ne) (HTO); Status (PC), and NKOH result together forming (0.20 mol Ne) (HTO); Status (PC), and NKOH result together forming (0.20 mol Ne) (HTO); Status (PC), and NKOH result together forming (0.20 mol Ne) (HTO); Status (PC), and PCOCCH and DS); and at MACH Status (PC), and CACCOH and DS); and at MACH Status (PC), and CACCOH and DS); and at MACH (PC), and CACCOH and DS; and at MACH (PC), and CACCOH and CACH
(b) S (c) N (d) H (d) H Exercis 37 Who 8 (C C (C C C (C C (C C (C C (C S 8 Abot C (C) 1 8 Abot C (C) 1 8 Abot C (C) 1 8 (1	Bits, and HCT exact together forming (0.20m kHz), tand 0.10 md NHz), march it is a hilfs: (x2), and Xx001 react together forming (0.20m kHz) (HDz, VHZ), and Xx001 react together forming (0.20m kHz) (HDz, VHZ), and Xx001 react together forming (0.20m kHz) (HDz, VHZ), and Xx001 react together forming (0.20m kHz) (HDz, VHZ), and Xx001 react together forming (0.20m kHz) (HDz, VHZ), and Xx001 react together forming (0.20m kHz) (HDZ, VHZ), and Xx001 react together forming (0.20m kHz), and Xx001 react together
(b) S (c) N (d) H (d) H (c) H (c) C (c) C) C (c) C) C (c) C (c) C (c) C (c) C) C (c) C (c) C) C (c) C (c) C) C (c) C) C (c) C (c) C)	Bits, and HCI carest together forming (0.20 mol NH)CL and 0.10 mol NH); march it is a holfs: (x) and NixOI result together forming (0.20 mol Ne) (HO); (x) and NixOI result together forming (0.20 mol Ne) (HO); (x) and NixOI result together forming (0.20 mol Ne) (HO); (x) and NixOI result together forming (0.20 mol Ne) (HO); (x) and NixOI result together forming (0.20 mol Ne) (HO); (x) and NixOI result together forming (0.20 mol Ne) (HO); (x) and (x) (X
(b) S: (c) N (d) H (d) H (d) H (d) H (d) H (c) C C C C C C C C C C C C C C C C C C C	Bits, and HCT carest regender forming (0.20 mol NHz) and 0.10 mol NHz, morest is the Mole. yPCs, and XMOST creat regender forming (0.20 mol NHz) MOS, Set Set Set and XMOST creat regender forming (0.20 mol NHz) MOS, Set and XMOST creat regender forming (0.20 mol NHz) MOS, Set and XMOST creat regender forming (0.20 mol NHz) MOS, Set and XMOST creat regender forming (0.20 mol NHz) MOS, Set and XMOST creat regender forming (0.20 mol NHz) MOST, Set and XMOST creat regender forming (0.20 mol NHz) MOST, Set and XMOST, MOST and XMOST, Set and XMOST and XMOST, Set and XMOST,
(b) S (c) N (d) H (d) H (d) H (c) C (c) C) C (c) C (c) C (c) C)	His, and HCI near together forming (0.20 mol NH), tances it is a holin proc. and Statistic near together forming (0.20 mol NH, HC), MCA mol Next Next Together forming (0.20 mol NH, HC), proc. and Statistic near together forming (0.20 mol NH, HC), MCA mol Next Next Together forming (0.20 mol NH, HC), proc. and Statistic near together forming (0.20 mol NH, HC), MCA mol Next Next Next Next Next Next Next Next
(b) S: (c) N us (d) H (c) S (d) H (c) S (c) S (c	His, and HCI near together forming (0.20 mol NH), tances it is a holin proc. and Statistic near together forming (0.20 mol NH, HC), MCA mol Next Next Together forming (0.20 mol NH, HC), proc. and Statistic near together forming (0.20 mol NH, HC), MCA mol Next Next Together forming (0.20 mol NH, HC), proc. and Statistic near together forming (0.20 mol NH, HC), MCA mol Next Next Next Next Next Next Next Next
(b) S: (c) N us (d) H (c) S (d) H (c) S (c) S (c	Bits, and R1 (Fracts register forming (2.30 mol NHz) and 0.10 mol NHz), monoto it is a bits yob, with Vision it must register forming (2.30 mol NHz) (Pro), Point Manual Vision it must register forming (2.30 mol NHz) (Pro), Point Manual Vision it must register forming (2.30 mol NHz) (Pro), Point Manual Vision it must register forming (2.30 mol NHz) (Pro), Point Point <
(b) 5: (c) N using the second	Bits, and R1 (Fracts register forming (2.30 mol NHz) and 0.10 mol NHz), monoto it is a bits yob, with Vision it must register forming (2.30 mol NHz) (Pro), Point Manual Vision it must register forming (2.30 mol NHz) (Pro), Point Manual Vision it must register forming (2.30 mol NHz) (Pro), Point Manual Vision it must register forming (2.30 mol NHz) (Pro), Point Point <
(b) S: (c) N u (d) H (d) H (d) H (c) C (c) C) C (c) C) C (c)	Bits, and R1 (Fracts register forming (2.30 mol NHz) and 0.10 mol NHz), monoto it is a bits yob, with Vision it must register forming (2.30 mol NHz) (Pro), Point Manual Vision it must register forming (2.30 mol NHz) (Pro), Point Manual Vision it must register forming (2.30 mol NHz) (Pro), Point Manual Vision it must register forming (2.30 mol NHz) (Pro), Point Point <
(b) 5 (c) N (c) N	Big and Big and Start conduct from the Start source from
(b) Si (c) N (c) N	Big and Planet regenerate forming (2.3 mink Nr.4 mink); Mark Nr.801 (next regenerate forming (2.3 mink Nr.4 mink); Mark Nr.801 (next regenerate forming (2.3 mink Nr.4 mink); Mark Nr.801 (next regenerate forming (2.3 mink Nr.4 mink); Mark Nr.801 (next regenerate forming (2.3 mink Nr.4 mink); Mark Nr.801 (next regenerate forming (2.3 mink Nr.4 mink); Mark Nr.801 (next regenerate forming (2.3 mink Nr.4 mink); Mark Nr.801 (next regenerate forming (2.3 mink Nr.4 mink); Mark Nr.801 (next regenerate forming (2.3 mink Nr.4 mink); Mark Nr.801 (next regenerate forming (2.3 mink Nr.4 mink); Mark Nr.801 (next regenerate forming (2.3 mink); Mark Nr.8
(b) 5 (c) 8 (c) 8 (c) 8 (c) 9 (c) 9	Big and Big and Start conduct from the Start source from
(b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	Big and Big and space forming (3.20 mail Nig/L and 0.10 mol Nig/L Space mail Nig/L Mail Nig/L and the space forming (3.20 mail Nig/L) Space mail Nig/L Mail Nig/L and Nig/L and Nig/L and Nig/L Space mail Nig/L Mail Nig/L and Nig/L and Nig/L and Nig/L Space mail Nig/L Mail Nig/L and Nig/L and Nig/L and Nig/L Space mail Nig/L Mail Nig/L and Nig/L and Nig/L and Nig/L and Nig/L and Nig/L Space mail Nig/L Mail Nig/L and N
(b) S (c) N	Min will find an end from the find and Min find and Min find Min
(b) 5 (c) NH (c) N (c) NH (c) N (c) NH (c) NH (c) NH (c) NH (c) NH	$M_{1} = M_{1} = M_{1} = M_{1} = M_{1} + M_{1} = M_{1$
	$M_{A} = M_{A} = M_{A} = M_{A} + M_{A$

Factors that can affect buffer solutions

I. Dilution: Although diluting a weakly acidic or basic buffer solution would reduce the concentration of H+ or OH- ion, because their concentrations are so low (as they are weak) the effect on changing pH or pOH can be ignored. For this reason we consider that dilution does not affect the pH or pOH.

This table shows the effect on pH when diluting an ethanoic acid buffer solution from 0.1 M to 0.0001 M.

However, the "buffering capacity" (ability to maintain pH) will be reduced because the concentrations are less.

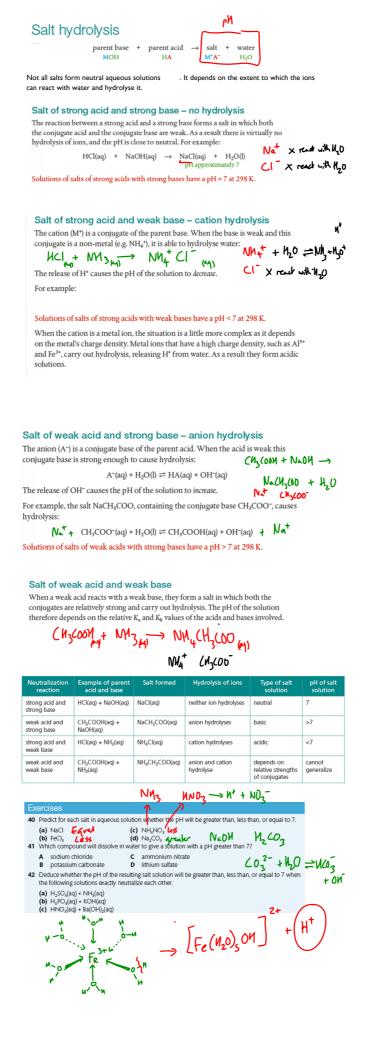
2. Temperature : As temperature affects K_a and K_b , it will affect the [H+] and [OH-] and therefore it will affect the pH of a buffer.

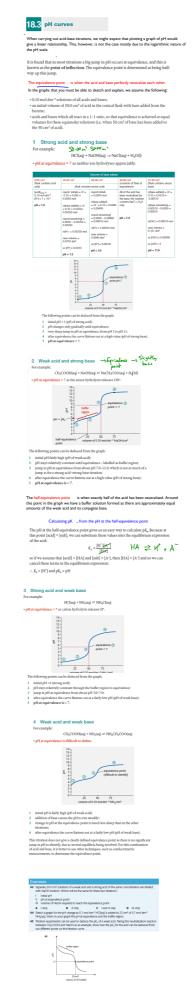
Exercises

37 Which mixture would produce a buffer solution when dissolved in 1.0 dm³ of water?

- Salt Water A 0.50 mol of CH₂COOH and 0.50 mol of NaOH B 0.50 mol of CH₃COOH and 0.25 mol of NaOH $\rightarrow B_{\alpha}(m_{100})_{z} + 2H_{20}$ C 0.50 mol of CH₃COOH and 1.00 mol of NaOH D 0.50 mol of CH₂COOH and 0.25 mol of Ba(OH), 38 A buffer solution can be prepared by adding which of the following to 50 cm³ of 0.10 mol dm⁻³ 50 cm³ of 0.10 mol dm⁻³ NaCH₃COO(a) / CM₃COOH \rightleftharpoons CH₃COO + H⁺ 25 cm³ of 0.10 mol dm⁻³ NaOH(aq) / CM₃COOH \rightarrow NaCM₃OD + H₂O 50 cm³ of 0.10 mol dm⁻³ NaOH(aq) \times CH₃COOH(aq)? 1 II 25 cm³ of 0.10 mol dm⁻³ NaOH(aq) III 50 cm³ of 0.10 mol dm⁻³ NaOH(aq) B I and II only C II and III only D I, II, and III A I only 39 State and explain which of the following has the greater buffering capacity: (I) 100 cm³ 0.30 mol dm⁻³ HNO₂ and 0.30 mol dm⁻³ NaNO₂ or
 - (II) 100 cm³ 0.10 mol dm⁻³ HNO₂ and 0.10 mol dm⁻³ NaNO₂.

37 B 38 B


(i) Because it has a higher concentration of the 39 acid and its conjugate base.


0.1M	4.76
0.01M	4.76
10-3M	4.79
10-4M	4.95

I. Weak acid + Shring base
$$\rightarrow$$
 Salt + Water
 $(H_{3}(00H + Na0H \rightarrow Na(H_{3}(00 + H_{2})))$
 (Na^{+})
 $(H_{3}(00 + H_{2})) = (H_{3}(00) + H_{2}) = (H_{3}(0) + (H_{2}) = (H_{3}(0) + (H_{2}) = (H_{3}(0) + (H_{2})) = (H_{3}(0) + (H_{2}) = (H_{3}(0) + (H_{2}) = (H_{3}(0) + (H_{2})) = (H_{3}(0) + (H_{2}$

Topic 18 - Acids and bases.notebook

5 Initial pH of acid to K_a of acid to pK_a of acid. At half equivalence, pH = pK_a, so this can be

Indicators signal change in pH

These indicators are themselves weak acids or weak bases in which the undissociated and dissociated forms have different colours. If we consider an indicator HIn that is a weak acid, it exists in equilibrium in solution as follows:

row example, intenty) orange is an indicate red when placed in a solution of acid such As an alkali is added and the pH increases indicator changes to yellow. We can show an equation using HMet to represent the bar of the solution of t

Alkali

 $HIn(aq) \rightleftharpoons H^{+}(aq) + In^{-}(aq)$ By applying Le Chatelier's principle, we can predict how this equilibrium will respond to a change in the pH of the medium.

- \bullet Increasing [H*]: the equilibrium will shift to the
- left in favour of HIn. • Decreasing [H*]: the equilibrium will shift to the
- right in favour of In-.

In other words, at low pH colour A will dominate and at higher pH colour B will dominate.

\clubsuit Indicators change colour when the pH is equal to their pK_a

The change in colour of methyl orange, known as its **change point** or **end-point**, happens in the range pH 3.1–4.4. What determines the pH at which this occurs for an indicator?

We can answer this by considering the equilibrium expression for the above reaction. The acid dissociation constant is defined as follows:

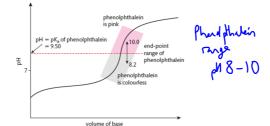
 $K_{a} = \frac{[H^{+}][In^{-}]}{rrr}$ [HIn]

At the point where the equilibrium is balanced between the acid and its conjugate base, that is where $[In^-] = [HIn]$, the indicator is exactly in the middle of its colour change. As these values cancel in the equation

 $K_{a} = \frac{[H^{+}][In^{-}]}{[HHn]}$

the expression becomes simplified as $K_a = [H^*]$ or $pK_a = pH$.

A small amount of added acid or alkali will disrupt this equilibrium and therefore cause a colour change.


If the pH at which an indicator changes happens to be in the equivalence point of an acidbase titration then we can use it to indicate the end-point

Choosing a suitable indicator for a titration

If the pH at which an indicator changes happens to be in the equivalence point of an acidbase titration then we can use it to indicate the end-point .

- 1 Determine what combination of weak and strong acid and base are reacting
- together.
- 2 Deduce the pH of the salt solution at equivalence from the nature of the parent
- acid and base (page 384).Choose an indicator with an end-point in the range of the equivalence point by consulting data tables.

For example, in the titration of a weak acid with a strong base the equivalence point occurs in the range pH 7–11. An appropriate indicator would therefore be one whose end-point lies in this range, such as phenolphthalein (end-point range 8.2–10.0) as shown in Figure 8.15.

Example of su End-point ra 9.50 8.2–10.0; colourless to pink 3-11 strong acid strong base phenolp methyl orange 3.46 3.2-4.4; red to yellow weak acid + strong base 7-11 phenolphthale 9.50 8.2–10.0; colourless to pink 6.6-8.0; yellow to red phenol red 8.00 3–7 3.46 strong acid + weak base methyl orange 3.2-4.4; red to yellow bromophenol blue 4.10 3.0-4.6; yellow to blue weak acid + weak base this combination of acid and base does not give a significant change in pH at equivalence, so there is no suitable indicator to use here

22. Acid-base indicators

			Colour change		
Indicator	pK,	pH range	Acid	Alkali	
methyl orange	3.7	3.1-4.4	red	yellow	
bromophenol blue	4.2	3.0-4.6	yellow	blue	
bromocresol green	4.7	3.8-5.4	yellow	blue	
methyl red	5.1	4.4-6.2	red	yellow	
bromothymol blue	7.0	6.0-7.6	yellow	blue	
phenol red	7.9	6.8-8.4	yellow	red	
phenolphthalein	9.6	8.3-10.0	colourless	pink	

1. Brenched-Lowy acid
2. Conjugate base for CH3(00M? CH3COOT
3. Mg + H2SO2
$$\rightarrow$$
 Mg SO4 + H2
4. CaCO3 + 2HCI \rightarrow CaC 12 + H2O + CO2
5. CM^{metholustum} is alwings +/C?
6. pH = -log [HT]
7. One pH with = a X +O increase/dourses
8. Symbol por desociation construct of H2O? Ko
9. Ku = [HT] [CMT]
10. pH + pOH = [4]
11. Z Strong ands + 2 weak bases. HCl H2SO2
12. 2 methods of distinguishing weak/strong wide + taxes?
13. Lewis base? Donate = inducator
14.a. pOH = log[ON] h. [ONT] = ? [DPM
K. Acid HA⁴ houst expression for $K_{a} = [H_{a}J][A^{-1}]$
16. Ka × Ks = ? Kin
17. Low pKa = stronge on weaker acid ?
18. Sketch a graph exting a W base to a S acid.
19. u " " " a S and to a S base.
20. How can we work out the pKa of a weak
acid or base form a pH wave?
W bise
+ S and
7. Low plan = form a pH wave?
W bise
+ S and
7. Low plan = form a pH wave?
W bise
+ S and
7. Low plan = form a pH wave?

 Practice questions

 1
 The K_b value for a base is 5.0 × 10⁻² mol dm⁻³ at 298 K. What is the K_a value for its conjugate acid at this temperature?

 A
 5.0 × 10⁻²
 B
 2.0 × 10⁻⁶
 C
 2.0 × 10⁻¹²
 D
 2.0 × 10⁻¹³

 2
 Which combination will form a buffer solution?
 A
 100 cm³ of 0.10 mol dm⁻³ hydrochloric acid with 50 cm³ of 0.10 mol dm⁻³ sodium hydroxide
 B
 100 cm³ of 0.10 mol dm⁻³ ethanoic acid with 50 cm³ of 0.10 mol dm⁻³ sodium hydroxide

- C 50 cm³ of 0.10 mol dm⁻³ hydrochloric acid with 100 cm³ of 0.10 mol dm⁻³ sodium hydroxide
- D 50 cm³ of 0.10 mol dm⁻³ ethancic acid with 100 cm³ of 0.10 mol dm⁻³ sodium hydroxide
- 3 Equal volumes and concentrations of hydrochloric acid and ethanoic acid are titrated with sodium hydroxide solutions of the same concentration. Which statement is correct?
 - A The initial pH values of both acids are equal.
 - **B** At the equivalence points, the solutions of both titrations have pH values of 7.
 - C The same volume of sodium hydroxide is needed to reach the equivalence point.
- D The pH values of both acids increase equally until the equivalence points are reached.
- 4 Bromophenol blue changes from yellow to blue over the pH range of 3.0 to 4.6. Which statement is correct?
 - A Molecules of bromophenol blue, Hin, are blue.
 - B At pH < 3.0, a solution of bromophenol blue contains more ions, In⁻, than molecules, HIn.
 - C The pK_a of bromophenol blue is between 3.0 and 4.6.
 - D Bromophenol blue is a suitable indicator to titrate ethanoic acid with potassium hydroxide solution.
- 5 What is the K_b expression for the reaction of ethylamine with water?
 - A $K_b = [CH_3CH_2NH_3^+][OH^-]$
 - $\mathbf{B} \quad \mathcal{K}_{\mathrm{b}} = \frac{[\mathsf{CH}_{3}\mathsf{CH}_{2}\mathsf{NH}_{3}^{+}][\mathsf{OH}^{-}]}{\mathsf{I}\mathsf{CH}_{3}\mathsf{CH}_{3}\mathsf{CH}_{3}\mathsf{CH}_{3}}$
 - CH₃CH₂NH₂]
 - $\mathbf{C} \quad \mathcal{K}_{\mathrm{b}} = \frac{[\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{NH}_{3}^{+}][\mathrm{H}_{2}\mathrm{O}]}{[\mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{NH}_{2}]}$
 - $\mathbf{D} \quad \mathcal{K}_{b} = [CH_{3}CH_{2}NH_{2}] [H_{2}O]$
- 8 If 20 cm³ samples of 0.1 mol dm⁻³ solutions of the acids below are taken, which acid would require a different volume of 0.1 mol dm⁻³ sodium hydroxide for complete neutralization?
 - A nitric acid B sulfuric acid C ethanoic acid D hydrochloric acid Which mixture of acid and alkali would produce a buffer solution?

	which mixture of dod and and and a produce a parter solution					
	Acid	Alkali				
А	40 cm ³ 0.1 mol dm- ³ HCl	60 cm³ 0.1 mol dm-³ NaOH				
в	60 cm ³ 0.1 mol dm ⁻³ HCl	40 cm ³ 0.1 mol dm ⁻³ NaOH				
с	40 cm ³ 0.1 mol dm ⁻³ HCl	60 cm ³ 0.1 mol dm ⁻³ NH ₃				
D	60 cm ³ 0.1 mol dm- ³ HCl	40 cm ³ 0.1 mol dm- ³ NH ₃				

10 Ammonia acts as a weak base when it reacts with water. What is the K_b expression for this reaction?

A [NH4 ⁺][OH ⁻] [NH,][H,O]	$\mathbf{B} = \frac{[NH_3][H_2O]}{[NH_4^+][OH^-]}$	C [NH₃] [NH₄⁺][OH⁻]	$D = \frac{[NH_4^+][OH^-]}{[NH_3]}$	D
[NH,][H,O]	[NH,*][OH-]	[NH,*][OH-]	[NH ₂]	

- 11 The indicator HIn is used in a titration between an acid and base. Which statement about the dissociation of the indicator, HIn, is correct?
 - Hln(aq) ≓ H⁺(aq) + In⁻(aq)
 - colour A colour B A In a strongly alkaline solution, colour B would be observed.
 - B In a strongly addine solution, colour B would be observed.
 - C [In⁻] is greater than [HIn] at the equivalence point.
 - D In a weakly acidic solution colour B would be observed.
- 12 Which salt dissolves in water to form an acidic solution?

ammonium nitrate	C potassium chloride

D	sodium hydrogencarbonate	

- 13 Which of the following mixtures of equimolar solutions produces a buffer with pH < 7 at 298 K?
 - A 50 cm³ HCl(aq) and 150 cm³ NH₃(aq)

A a

B sodium ethanoate

- B 50 cm³ CH₃COOH(aq) and 50 cm³ HCl(aq)
- C 100 cm³ CH₃COOH(aq) and 50 cm³ NaOH(aq)
- $D \quad$ 50 cm 3 CH $_3 \text{COOH}(\text{aq})$ and 50 cm 3 NH $_3(\text{aq})$
- 16 Ammonia can be converted into nitric acid (HNO₃(aq)) and hydrocyanic acid (HCN(aq)). The pK_a of hydrocyanic acid is 9.21.
 - (a) Distinguish between the terms strong acid and weak acid and state the equations used to show the dissociation of each acid in aqueous solution. (3)
 - (b) Deduce the expression for the ionization constant, K_y, of hydrocyanic acid and calculate its value from the pK_y value given. (2)
 - (c) Use your answer from part (b) to calculate the [H*] and the pH of an aqueous solution of hydrocyanic acid of concentration 0.108 mol dm⁻³. State one assumption made in arriving at your answer. (4)

Causes of acid deposition

All rain water is naturally acidic owing to the presence of dissolved carbon dioxide, which dissolves in water to form the weak acid carbonic acid, H_2CO_3 .

$$H_2O(I) + CO_2(g) \rightleftharpoons H_2CO_3(aq)$$

Carbonic acid ionizes to form the following equilibrium:

$$H_2CO_3(aq) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$$

Acid deposition is a broader term than acid rain and includes all processes by which acidic components as precipitates or gases leave the atmosphere. There are two main types of acid deposition:

- wet acid deposition: rain, snow, sleet, hail, fog, mist, dew fall to ground as aqueous precipitates;
- dry acid deposition: acidifying particles, gases fall to ground as dust and smoke, later dissolve in water to form acids.

Sulfur oxides

$$S(s) + O_2(g) \rightarrow SO_2(g)$$

Sulfur dioxide is a colourless gas with a sharp smell. It dissolves in water to form sulfurous acid, $H_2SO_3(aq)$.

$$H_2O(l) + SO_2(g) \rightarrow H_2SO_3(aq)$$

Sulfur dioxide can also be oxidized to sulfur trioxide, SO3, which then dissolves in water to form sulfuric acid, H2SO4.

$$\begin{split} &2\mathrm{SO}_2(\mathrm{g}) + \mathrm{O}_2(\mathrm{g}) \to 2\mathrm{SO}_3(\mathrm{g}) \\ &\mathrm{H}_2\mathrm{O}(\mathrm{l}) + \mathrm{SO}_3(\mathrm{g}) \to \mathrm{H}_2\mathrm{SO}_4(\mathrm{aq}) \end{split}$$