San Francisco de Paula, Science Department.
  • Department Home page
    • The International Baccalaureate
    • Conceptual learning
    • How will I be assessed?
    • Primary Science Club
    • Science Activities Noticeboard
  • MYP Year 6
    • Yr 6 Syllabus & Assessment
    • Contents >
      • Unit 1: Introduction to investigation >
        • How to write Lab Reports
      • Unit 2: Living things
      • Unit 3: Classification of living things
      • Unit 4: Fungi, Protists and Bacteria
      • Unit 5: Nutrition I
    • Laboratory and Tasks
  • MYP Year 7
    • Yr 7 Syllabus & Assessment
    • Contents >
      • 7º PAI en español
      • Unit 1 - What do scientists do? >
        • How to write a lab report
        • SI Units
      • Unit 2 - The Earth in the Universe
      • Unit 3: How can we study living things >
        • Unit 3a - Living things
        • Unit 3b - The Diversity of Life >
          • Monera
          • Protists
          • Fungi
          • The Plant Kingdom
          • The Animal Kingdom
      • Unit 4 - Ecosystems & Biodiversity
      • Unit 5: The systems of the Earth >
        • Unit 5a - The Geosphere and the Atmosphere
        • Unit 5b - The hydrosphere and the Biosphere
      • Unit 6: Our changing home >
        • Unit 6a: Internal Geodynamics
        • Unit 6b: External Geodynamics
    • Laboratory & Tasks
  • MYP Year 8
    • Yr8 Syllabus & Assessment
    • Contents >
      • Units 1, 2 and 3 - Measuring Matters >
        • Unit 1 Physical quantities and Scientific Activity >
          • Converting Units
        • Unit 2 Matter and its Properties
        • Unit 3 Pure Substances and Mixtures >
          • Concentration and units (g/L, % mass)
      • Units 4 and 5 - Chemical Cooking >
        • Models of the Atom
        • Electronic structure of matter.
        • Periodic table (distribution of elements).
        • Chemical formulation
        • Molecular mass
        • Moles
        • Types of reactions
        • Lavoisier's law: Balancing of equations
        • Reaction rates: Factors that affect the speed of a reaction
      • Units 6, 7 and 8 - Move It! >
        • Unit 6 - Motion (URM)
        • Unit 6 - Motion (UARM)
        • Unit 7 - Forces and Mass
        • Unit 8 - Energy and Transformations
    • Laboratory & Tasks >
      • How to write a lab report
  • MYP Year 9
    • Yr9 Syllabus & Assessment
    • Contents >
      • Unit 1 - General organization of the human body, health and illness >
        • Human cells: levels of organisation
        • Health and types of diseases
        • Preventing diseases
        • The Immune System
        • Transplants
        • Addictive substances and associated substances
        • Complete Unit 1
      • Unit 2 - Nutrition >
        • Nutrition and nutrients
        • The Mediterranean diet
        • The anatomy and physiology of the digestive system
        • The anatomy and physiology of the circulatory system >
          • Revision quizzes
        • The anatomy and physiology of the respiratory system
        • The anatomy and physiology of the excretory system
        • Nutrition Documentaries
      • Unit 3 - Interaction and Coordination >
        • The function and anatomy of the nervous system
        • The endocrine system
      • Unit 4 - The reproductive system >
        • Anatomy and physiology of the human reproductive system.
        • Gametogenesis
        • Menstrual cycle
        • Fertilization
        • Infertility, contraception and STDs
      • Unit 5 - Genetics >
        • DNA and genetic modification
        • Cells and Inheritance
        • MORE ON MITOSIS VS MEIOSIS
        • Mendelian genetics
      • Unit 6 - Evolution >
        • Evolutionary theories
        • Evolution Simulators
      • EXTRA Unit 7 - Ecology and the environment >
        • Ecology
    • Laboratory & Tasks
  • MYP Year 10
    • Yr10 Syllabus
    • Contents >
      • Unit 0 - Formulation
      • Unit 1 - Scientific Activity
      • Unit 2 - Kinetic theory
      • The Atmosphere
      • Unit 3 - Mixtures and pures substances: Colligative properties
      • Unit 4 - The structure of matter
      • Unit 5 - Stoichiometry
      • Unit 6 - Redox Reactions
      • Unit 7 - Movement
      • Unit 8 - Forces
      • Unit 9 - Electricity
      • Unit 10 - Energy
    • Revision
    • Assessments and Lab Sessionss >
      • Assessments >
        • Criterion D - Water crisis
      • Session 1 - Paper balls
      • Sessions 2 - Properties of substances
      • Session 3 - Preparing a Schlenk tube
      • Session 4 - Gas constant
      • Session 5 - Colligative properties
      • Session 6 - Job´s method
      • Session 7 - Redox titration
      • Session 8 - UARM
      • Session 9 - Hooke´s Law
    • PISA questions
  • DP Biology SL
    • Contents >
      • Topic 1: Cell biology >
        • 1.1 Introduction to cells
        • 1.2 Ultrastructure of cells
        • 1.3 Membrane structure
        • 1.4 Membrane transport
        • 1.5 The origin of cells
        • 1.6 Cell division
      • Topic 2: Molecular biology >
        • 2.1 Molecules to metabolism
        • 2.2 Water
        • 2.3 Carbohydrates and lipids
        • 2.4 Proteins
        • 2.5 Enzymes
        • 2.6 Structure of DNA and RNA
        • 2.7 DNA replication, transcription and translation
        • 2.8 Cell respiration
        • 2.9 Photosynthesis
      • Topic 3: Genetics >
        • 3.1 Genes
        • 3.2 Chromosomes
        • 3.3 Meiosis
        • 3.4 Inheritance
        • 3.5 Genetic modification and biotechnology
      • Topic 4: Ecology >
        • 4.1 Species, communities and ecosystems
        • 4.2 Energy flow
        • 4.3 Carbon cycling
        • 4.4 Climate change
      • C: Ecology and conservation >
        • C.1 Species and communities
        • C.2 Communities and ecosystems
        • C.3 Impacts of humans on ecosystems
        • C.4 Conservation of biodiversity
      • Topic 5: Evolution and biodiversity >
        • 5.1 Evidence for evolution
        • 5.2 Natural selection
        • 5.3 Classification of biodiversity
        • 5.4 Cladistics
      • Topic 6: Human physiology >
        • 6.1 Digestion and absorption
        • 6.2 The blood system
        • 6.3 Defence against infectious disease
        • 6.4 Gas exchange
        • 6.5 Neurons and synapses
        • 6.6 Hormones, homeostasis and reproduction
    • Labs >
      • Statistical analysis
    • Previous to 2015 >
      • Topic 1: Statistical analysis
      • Topic 2: Cells >
        • 2.1 Cell theory
        • 2.2 Prokaryotic cells
        • 2.3 Eukaryotic cells
        • 2.4 Membranes
        • 2.5 Cell division
      • Option F: Microbes and biotechnology >
        • F1 Diversity of microbes
        • F2 Microbes and the environment
        • F3 Microbes and biotechnology
        • F4 Microbes and food production
      • Topic 5: Ecology and evolution >
        • 5.1 Communities and ecosystems
        • 5.2 The greenhouse effect
        • 5.3 Populations
        • 5.4 Evolution
        • 5.5 Classification
      • Option D: Evolution >
        • D1 Origin of life on Earth
        • D2 Species and speciation
        • D3 Human evolution
      • Topic 3: The chemistry of life >
        • 3.1 Chemical elements and water
        • 3.2 Carbohydrates, lipids and proteins
        • 3.3 DNA structure
        • 3.4 DNA replication
        • 3.5 Transcription and translation
        • 3.6 Enzymes
        • 3.7 Cell respiration
        • 3.8 Photosynthesis
        • TO DELETE
      • Topic 4: Genetics >
        • 4.1 Chromosomes, genes, alleles and mutations
        • 4.2 Meiosis
        • 4.3 Theoretical genetics
        • 4.4 Genetic engineering and biotechnology
      • Topic 6: Human health and physiology >
        • 6.1 Digestion
        • 6.2 The transport system
        • 6.3 Defence against infectious disease
        • 6.4 Gas exchange
        • 6.5 Nerves, hormones and homeostasis
        • 6.6 Reproduction
    • Tasks >
      • Databases
    • Documents
    • DP Biology Resources
    • Interesting links
  • Biología 12º
    • Bloque 1. Bioquímica
    • Bloque 2. Biología celular
    • Bloque 3. Genética y evolución
    • Bloque 4. Microbiología y biotecnología
    • Bloque 5. Inmunología
  • IB Biología NS
  • IB Chemistry HL
    • Contents >
      • Year 1 >
        • Topic 0 - Formulation
        • Topic 1 - Stoichiometric relationships
        • Topic 2 and 12 - Atomic structure
        • Topic 3 and 13 - Periodicity
        • Topic 4 and 14 - Chemical structure and bonding
        • Topic 5 and 15 - Energetics
        • Topic 10 and 20 - Organic chemistry
      • Year 2 >
        • Topic 6 and 16 - Chemical kinetics
        • Topic 7 and 17 - Equilibrium
        • Topic 8 and 18 - Acids and bases
        • Topic 9 and 19 - Redox processes
        • Topic 11 and 21 - Measurement and data processing
        • Option D - Medicinal chemistry
    • Lab work >
      • SFP Campus lab reports
      • Internal assessment structure
      • Internal Assessment examples
    • Nature of science
    • General revision
    • Selectividad
    • General information
    • Extended Essay
  • Other resources for students
    • Science Fair
    • Science essays >
      • How to Reference
    • Chemical formulation
    • Laboratory >
      • How to write a lab report
      • Microscopy
      • Excel for graphs and calculations >
        • Calculate the mean and SD
        • Drawing graphs
        • Add error bars to excel graphs
      • Lab videos!
    • Further Reading >
      • Women In Science
      • Infographics
    • Proyecto integrado
  • Department Home page
    • The International Baccalaureate
    • Conceptual learning
    • How will I be assessed?
    • Primary Science Club
    • Science Activities Noticeboard
  • MYP Year 6
    • Yr 6 Syllabus & Assessment
    • Contents >
      • Unit 1: Introduction to investigation >
        • How to write Lab Reports
      • Unit 2: Living things
      • Unit 3: Classification of living things
      • Unit 4: Fungi, Protists and Bacteria
      • Unit 5: Nutrition I
    • Laboratory and Tasks
  • MYP Year 7
    • Yr 7 Syllabus & Assessment
    • Contents >
      • 7º PAI en español
      • Unit 1 - What do scientists do? >
        • How to write a lab report
        • SI Units
      • Unit 2 - The Earth in the Universe
      • Unit 3: How can we study living things >
        • Unit 3a - Living things
        • Unit 3b - The Diversity of Life >
          • Monera
          • Protists
          • Fungi
          • The Plant Kingdom
          • The Animal Kingdom
      • Unit 4 - Ecosystems & Biodiversity
      • Unit 5: The systems of the Earth >
        • Unit 5a - The Geosphere and the Atmosphere
        • Unit 5b - The hydrosphere and the Biosphere
      • Unit 6: Our changing home >
        • Unit 6a: Internal Geodynamics
        • Unit 6b: External Geodynamics
    • Laboratory & Tasks
  • MYP Year 8
    • Yr8 Syllabus & Assessment
    • Contents >
      • Units 1, 2 and 3 - Measuring Matters >
        • Unit 1 Physical quantities and Scientific Activity >
          • Converting Units
        • Unit 2 Matter and its Properties
        • Unit 3 Pure Substances and Mixtures >
          • Concentration and units (g/L, % mass)
      • Units 4 and 5 - Chemical Cooking >
        • Models of the Atom
        • Electronic structure of matter.
        • Periodic table (distribution of elements).
        • Chemical formulation
        • Molecular mass
        • Moles
        • Types of reactions
        • Lavoisier's law: Balancing of equations
        • Reaction rates: Factors that affect the speed of a reaction
      • Units 6, 7 and 8 - Move It! >
        • Unit 6 - Motion (URM)
        • Unit 6 - Motion (UARM)
        • Unit 7 - Forces and Mass
        • Unit 8 - Energy and Transformations
    • Laboratory & Tasks >
      • How to write a lab report
  • MYP Year 9
    • Yr9 Syllabus & Assessment
    • Contents >
      • Unit 1 - General organization of the human body, health and illness >
        • Human cells: levels of organisation
        • Health and types of diseases
        • Preventing diseases
        • The Immune System
        • Transplants
        • Addictive substances and associated substances
        • Complete Unit 1
      • Unit 2 - Nutrition >
        • Nutrition and nutrients
        • The Mediterranean diet
        • The anatomy and physiology of the digestive system
        • The anatomy and physiology of the circulatory system >
          • Revision quizzes
        • The anatomy and physiology of the respiratory system
        • The anatomy and physiology of the excretory system
        • Nutrition Documentaries
      • Unit 3 - Interaction and Coordination >
        • The function and anatomy of the nervous system
        • The endocrine system
      • Unit 4 - The reproductive system >
        • Anatomy and physiology of the human reproductive system.
        • Gametogenesis
        • Menstrual cycle
        • Fertilization
        • Infertility, contraception and STDs
      • Unit 5 - Genetics >
        • DNA and genetic modification
        • Cells and Inheritance
        • MORE ON MITOSIS VS MEIOSIS
        • Mendelian genetics
      • Unit 6 - Evolution >
        • Evolutionary theories
        • Evolution Simulators
      • EXTRA Unit 7 - Ecology and the environment >
        • Ecology
    • Laboratory & Tasks
  • MYP Year 10
    • Yr10 Syllabus
    • Contents >
      • Unit 0 - Formulation
      • Unit 1 - Scientific Activity
      • Unit 2 - Kinetic theory
      • The Atmosphere
      • Unit 3 - Mixtures and pures substances: Colligative properties
      • Unit 4 - The structure of matter
      • Unit 5 - Stoichiometry
      • Unit 6 - Redox Reactions
      • Unit 7 - Movement
      • Unit 8 - Forces
      • Unit 9 - Electricity
      • Unit 10 - Energy
    • Revision
    • Assessments and Lab Sessionss >
      • Assessments >
        • Criterion D - Water crisis
      • Session 1 - Paper balls
      • Sessions 2 - Properties of substances
      • Session 3 - Preparing a Schlenk tube
      • Session 4 - Gas constant
      • Session 5 - Colligative properties
      • Session 6 - Job´s method
      • Session 7 - Redox titration
      • Session 8 - UARM
      • Session 9 - Hooke´s Law
    • PISA questions
  • DP Biology SL
    • Contents >
      • Topic 1: Cell biology >
        • 1.1 Introduction to cells
        • 1.2 Ultrastructure of cells
        • 1.3 Membrane structure
        • 1.4 Membrane transport
        • 1.5 The origin of cells
        • 1.6 Cell division
      • Topic 2: Molecular biology >
        • 2.1 Molecules to metabolism
        • 2.2 Water
        • 2.3 Carbohydrates and lipids
        • 2.4 Proteins
        • 2.5 Enzymes
        • 2.6 Structure of DNA and RNA
        • 2.7 DNA replication, transcription and translation
        • 2.8 Cell respiration
        • 2.9 Photosynthesis
      • Topic 3: Genetics >
        • 3.1 Genes
        • 3.2 Chromosomes
        • 3.3 Meiosis
        • 3.4 Inheritance
        • 3.5 Genetic modification and biotechnology
      • Topic 4: Ecology >
        • 4.1 Species, communities and ecosystems
        • 4.2 Energy flow
        • 4.3 Carbon cycling
        • 4.4 Climate change
      • C: Ecology and conservation >
        • C.1 Species and communities
        • C.2 Communities and ecosystems
        • C.3 Impacts of humans on ecosystems
        • C.4 Conservation of biodiversity
      • Topic 5: Evolution and biodiversity >
        • 5.1 Evidence for evolution
        • 5.2 Natural selection
        • 5.3 Classification of biodiversity
        • 5.4 Cladistics
      • Topic 6: Human physiology >
        • 6.1 Digestion and absorption
        • 6.2 The blood system
        • 6.3 Defence against infectious disease
        • 6.4 Gas exchange
        • 6.5 Neurons and synapses
        • 6.6 Hormones, homeostasis and reproduction
    • Labs >
      • Statistical analysis
    • Previous to 2015 >
      • Topic 1: Statistical analysis
      • Topic 2: Cells >
        • 2.1 Cell theory
        • 2.2 Prokaryotic cells
        • 2.3 Eukaryotic cells
        • 2.4 Membranes
        • 2.5 Cell division
      • Option F: Microbes and biotechnology >
        • F1 Diversity of microbes
        • F2 Microbes and the environment
        • F3 Microbes and biotechnology
        • F4 Microbes and food production
      • Topic 5: Ecology and evolution >
        • 5.1 Communities and ecosystems
        • 5.2 The greenhouse effect
        • 5.3 Populations
        • 5.4 Evolution
        • 5.5 Classification
      • Option D: Evolution >
        • D1 Origin of life on Earth
        • D2 Species and speciation
        • D3 Human evolution
      • Topic 3: The chemistry of life >
        • 3.1 Chemical elements and water
        • 3.2 Carbohydrates, lipids and proteins
        • 3.3 DNA structure
        • 3.4 DNA replication
        • 3.5 Transcription and translation
        • 3.6 Enzymes
        • 3.7 Cell respiration
        • 3.8 Photosynthesis
        • TO DELETE
      • Topic 4: Genetics >
        • 4.1 Chromosomes, genes, alleles and mutations
        • 4.2 Meiosis
        • 4.3 Theoretical genetics
        • 4.4 Genetic engineering and biotechnology
      • Topic 6: Human health and physiology >
        • 6.1 Digestion
        • 6.2 The transport system
        • 6.3 Defence against infectious disease
        • 6.4 Gas exchange
        • 6.5 Nerves, hormones and homeostasis
        • 6.6 Reproduction
    • Tasks >
      • Databases
    • Documents
    • DP Biology Resources
    • Interesting links
  • Biología 12º
    • Bloque 1. Bioquímica
    • Bloque 2. Biología celular
    • Bloque 3. Genética y evolución
    • Bloque 4. Microbiología y biotecnología
    • Bloque 5. Inmunología
  • IB Biología NS
  • IB Chemistry HL
    • Contents >
      • Year 1 >
        • Topic 0 - Formulation
        • Topic 1 - Stoichiometric relationships
        • Topic 2 and 12 - Atomic structure
        • Topic 3 and 13 - Periodicity
        • Topic 4 and 14 - Chemical structure and bonding
        • Topic 5 and 15 - Energetics
        • Topic 10 and 20 - Organic chemistry
      • Year 2 >
        • Topic 6 and 16 - Chemical kinetics
        • Topic 7 and 17 - Equilibrium
        • Topic 8 and 18 - Acids and bases
        • Topic 9 and 19 - Redox processes
        • Topic 11 and 21 - Measurement and data processing
        • Option D - Medicinal chemistry
    • Lab work >
      • SFP Campus lab reports
      • Internal assessment structure
      • Internal Assessment examples
    • Nature of science
    • General revision
    • Selectividad
    • General information
    • Extended Essay
  • Other resources for students
    • Science Fair
    • Science essays >
      • How to Reference
    • Chemical formulation
    • Laboratory >
      • How to write a lab report
      • Microscopy
      • Excel for graphs and calculations >
        • Calculate the mean and SD
        • Drawing graphs
        • Add error bars to excel graphs
      • Lab videos!
    • Further Reading >
      • Women In Science
      • Infographics
    • Proyecto integrado
San Francisco de Paula, Science Department.

Unit 9 - Energy

Key concept - Change- 

Related concepts - Energy and transformation -

Global concept - Scientific and Technical Innovation- 
Picture
  • Potential 
  • Kinetic
  • Mechanical energy
  • Principle of conservation
  • Simple pendulum
  • Energy interchange
  • Heat
  • Work
  • Power
  • Thermal mechanics
  • Sources of energy
  • Rational use of energy

9a - What is energy?

Energy is the potential to do work.
When a force acts upon an object to cause a displacement of the object, it is said that work was done upon the object. "There are three key ingredients to work - force, displacement, and cause. In order for a force to qualify as having done work on an object, there must be a displacement and the force must cause the displacement." 
("Definition and Mathematics of Work", 2016)
Units: The units used for energy are Joules (J).
Task 9a: Define "energy".

9b - Potential and kinetic energy

All forms of energy such as chemical, electrical, thermal and nuclear can be considered as potential (position) energy, kinetic (movement) energy or a combination of both.

Potential energy is when an object posses energy associated to its position (right). To calculate it we use the formula: We will most commonly see gravitational potential energy which can be calculated using:
​          PEgrav = m x g x h
Picture
Kinetic energy is associated with movement such as the energy of a moving car. To calculate it we use the formula:

Picture
Task 9b:
1. What is the increase in PEgrav if a 75 kg man climbs up three stories in a block of flats. Each flat has the height of 3 m.
2. A pulley lifts up a box of 100000 g to a height of 150 dm. Calculate the energy aquired by the box.
3. Calculate the kinetic energy posessed by a car of 500 kg moving with a velocity of 108 km/h.
4. By how much does the KE of a 400 kg car change when it reduces its speed from 90 km/h to 54 km/h.
​
ANS 1. 6600 J     2.​ 15000 J    3. 225000 J     4. -80000 J

9c - Mechanical energy

When an object has work done upon it, it gains mechanical energy. For example, when a weightlifter uses chemical potential energy stored in their body to lift a weight (do work on it). As the weight is lifted higher it gains gravitational potential energy. This energy can then also be used to do work so is described as mechanical energy.
Picture
So, ME, can be described as the total kinetic and potential energy gained when work is done to provide it.
ME = KE + PE
Picture
Task 9c: Calculate the mechanical energy of 0.5 kg book falling at a velocity of 6 m/s at a height of 4 m.  ANS: 28.6 J
Extension: A ball of mass, m, falls from a height of 15 metres. Use the principle of the conservation of mechanical energy ( KE1 + PE1 = KE2 + PE2 ) to calculate the velocity of the object at a height of 5 metres.     ANS: 14 m/s = 50 km/h

9d - Conservation of energy - Pendulums

If no work is done by, or done on an object, the mechanical energy it has must stay the same. So:

KE1 + PE1 = KE2 + PE2

This can be seen in the action of a pendulum. A pendulum (right) consists of a bob (a weight) attached to a fixed point by some kind of cord. If we ignore the small effect of air resistance then no energy would be lost to friction with the air. This means that the ME must remain constant.
Picture
Picture
If the bob is starting at position 1 with no velocity then it only has potential energy. When it swings back and forward the total PE and KE at any point will equal the original PE.

(Remember that this is assuming that there is no friction at the fixed point or with the air.)
We can display the movement of a pendulum by plotting a velocity-time graph or a position-time graph  as seen below.
In this diagram, position D is the middle position in the swing.
Picture
Task 9d:
1. Sketch a position-time graph where position F is considered 0 m.
2. Explain why, in reality, a pendulum will eventually stop swinging.
3. Watch this VIDEO and explain why the different pendulums quickly lose the same timing even though they are raised to the same height. (Discuss PE and KE)
Extension: Pendulums we used to provide the first simple proof of the Earth´s rotation. Watch this VIDEO and see if you are able to explain how they are used.

Foucault-rotz.gif
By Nbrouard - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1753900


9e - Work (NOT IN FINAL EXAM)

Picture
As we have seen previously, work is a form of energy transfer. For this reason it also has the units of joules, J. We calculate is using the force applied and distance that the object is moved.
Force --> N
Distance --> m
Picture
Picture
Humans commonly use machines to carry out work but machines are never able to convert all of the energy provided into useful work due to energy dissipated to the environment. E.g. heat energy transferred because of friction.
When carrying out work with a machine, we want to be as efficient as possible. We can calculate the efficiency, r, using this simple equation:
r = useful work / energy provided
Task 9e:
​1. Calculate the work done by a 60kg woman climbing a 6 m ladder.
2. A crane´s motor uses 20000 J of energy to lift a box of 100 kg to a height of 12 m. Calculate its efficiency.

ANS: 1. 3500 J     

9f - Power (NOT IN FINAL EXAM)

Picture
Power is defined as the work carried out per unit of time:
P = W/t
Inputting SI units into this equation we would get the units power in J/s​.  More commonly we use watts, W.
Where   1 J/s = 1 W
Task 9f:
  1. ​Calculate the power of the man who pushes the box 8 m with a force of 15 N in a 6 s.
  2. Diego elevates his 80-kg body up a 2 m ladder in 1.8 seconds. Calculate his power (assuming the force needed to move up is that of his weight).
ANS: 1.​ 20 W     2. 871 W

9g - Heat and temperature (NOT IN FINAL EXAM)

Temperature is a way of measuring the average thermal energy (a type of kinetic energy) of the particles in a body. In science we tend to use the absolute temperature scale known as the Kelvin scale where 0 K represents 0 KE (no particle movement).
When 2 objects of different temperature are placed in contact with each other, we see the transfer of thermal energy via heat flow from the high temperature region to the low temperature one.
Picture
Energy Forms and Changes
Click to Run
Heat is, therefore, the transfer of thermal energy. There are 3 types:
Picture
Radiation:
The transfer of thermal energy through electromagnetic waves without need molecules to pass through.
Conduction:
​The transfer of thermal energy via the increased movement of particles and their collisions with other particles.
Convection:
Hot fluids are less dense than cold fluids therefore they rise away from the heat source. This allows the cold fluids to move to the heated area.

9h - The rational use of energy (NOT IN FINAL EXAM)

Problems with current energy production
Most energy production is related to the burning of fossil fuels such as coal, oil and natural gas.
  • Still large amounts available.
  • Produce large amounts of energy
Picture
  • Non-renewable so eventually will run out
  • Burning involves release of CO2, NOx (nitrogen oxides), SOx (sulfur dioxides) and other particles such as soot:
CO2 --> global warming
SOx and NOx --> acid rain
C (soot) --> global dimming
Solutions
Asides from reducing our dependence on energy, the major solution is finding cleaner and renewable forms of energy such as solar, wind and tidal. Below some of the benefits and limitations.
  • Biomass
  • Solar
Picture
Picture
  • Wind: 
Picture
  • Tidal
Picture
Created with Padlet
Benefits:
  • Renewable
  • Do not release harmful gases
  • Less expensive to maintain once setup
Limitations:​
  • Noise/visual pollution
  • Mostly weather dependent
  • Expensive to setup

References

("Definition and Mathematics of Work", 2016)
Powered by Create your own unique website with customizable templates.