San Francisco de Paula, Science Department.
  • Department Home page
    • The International Baccalaureate
    • Conceptual learning
    • How will I be assessed?
    • Primary Science Club
    • Science Activities Noticeboard
  • MYP Year 6
    • Yr 6 Syllabus & Assessment
    • Contents >
      • Unit 1: Introduction to investigation >
        • How to write Lab Reports
      • Unit 2: Living things
      • Unit 3: Classification of living things
      • Unit 4: Fungi, Protists and Bacteria
      • Unit 5: Nutrition I
    • Laboratory and Tasks
  • MYP Year 7
    • Yr 7 Syllabus & Assessment
    • Contents >
      • 7º PAI en español
      • Unit 1 - What do scientists do? >
        • How to write a lab report
        • SI Units
      • Unit 2 - The Earth in the Universe
      • Unit 3: How can we study living things >
        • Unit 3a - Living things
        • Unit 3b - The Diversity of Life >
          • Monera
          • Protists
          • Fungi
          • The Plant Kingdom
          • The Animal Kingdom
      • Unit 4 - Ecosystems & Biodiversity
      • Unit 5: The systems of the Earth >
        • Unit 5a - The Geosphere and the Atmosphere
        • Unit 5b - The hydrosphere and the Biosphere
      • Unit 6: Our changing home >
        • Unit 6a: Internal Geodynamics
        • Unit 6b: External Geodynamics
    • Laboratory & Tasks
  • MYP Year 8
    • Yr8 Syllabus & Assessment
    • Contents >
      • Units 1, 2 and 3 - Measuring Matters >
        • Unit 1 Physical quantities and Scientific Activity >
          • Converting Units
        • Unit 2 Matter and its Properties
        • Unit 3 Pure Substances and Mixtures >
          • Concentration and units (g/L, % mass)
      • Units 4 and 5 - Chemical Cooking >
        • Models of the Atom
        • Electronic structure of matter.
        • Periodic table (distribution of elements).
        • Chemical formulation
        • Molecular mass
        • Moles
        • Types of reactions
        • Lavoisier's law: Balancing of equations
        • Reaction rates: Factors that affect the speed of a reaction
      • Units 6, 7 and 8 - Move It! >
        • Unit 6 - Motion (URM)
        • Unit 6 - Motion (UARM)
        • Unit 7 - Forces and Mass
        • Unit 8 - Energy and Transformations
    • Laboratory & Tasks >
      • How to write a lab report
  • MYP Year 9
    • Yr9 Syllabus & Assessment
    • Contents >
      • Unit 1 - General organization of the human body, health and illness >
        • Human cells: levels of organisation
        • Health and types of diseases
        • Preventing diseases
        • The Immune System
        • Transplants
        • Addictive substances and associated substances
        • Complete Unit 1
      • Unit 2 - Nutrition >
        • Nutrition and nutrients
        • The Mediterranean diet
        • The anatomy and physiology of the digestive system
        • The anatomy and physiology of the circulatory system >
          • Revision quizzes
        • The anatomy and physiology of the respiratory system
        • The anatomy and physiology of the excretory system
        • Nutrition Documentaries
      • Unit 3 - Interaction and Coordination >
        • The function and anatomy of the nervous system
        • The endocrine system
      • Unit 4 - The reproductive system >
        • Anatomy and physiology of the human reproductive system.
        • Gametogenesis
        • Menstrual cycle
        • Fertilization
        • Infertility, contraception and STDs
      • Unit 5 - Genetics >
        • DNA and genetic modification
        • Cells and Inheritance
        • MORE ON MITOSIS VS MEIOSIS
        • Mendelian genetics
      • Unit 6 - Evolution >
        • Evolutionary theories
        • Evolution Simulators
      • EXTRA Unit 7 - Ecology and the environment >
        • Ecology
    • Laboratory & Tasks
  • MYP Year 10
    • Yr10 Syllabus
    • Contents >
      • Unit 0 - Formulation
      • Unit 1 - Scientific Activity
      • Unit 2 - Kinetic theory
      • The Atmosphere
      • Unit 3 - Mixtures and pures substances: Colligative properties
      • Unit 4 - The structure of matter
      • Unit 5 - Stoichiometry
      • Unit 6 - Redox Reactions
      • Unit 7 - Movement
      • Unit 8 - Forces
      • Unit 9 - Electricity
      • Unit 10 - Energy
    • Revision
    • Assessments and Lab Sessionss >
      • Assessments >
        • Criterion D - Water crisis
      • Session 1 - Paper balls
      • Sessions 2 - Properties of substances
      • Session 3 - Preparing a Schlenk tube
      • Session 4 - Gas constant
      • Session 5 - Colligative properties
      • Session 6 - Job´s method
      • Session 7 - Redox titration
      • Session 8 - UARM
      • Session 9 - Hooke´s Law
    • PISA questions
  • DP Biology SL
    • Contents >
      • Topic 1: Cell biology >
        • 1.1 Introduction to cells
        • 1.2 Ultrastructure of cells
        • 1.3 Membrane structure
        • 1.4 Membrane transport
        • 1.5 The origin of cells
        • 1.6 Cell division
      • Topic 2: Molecular biology >
        • 2.1 Molecules to metabolism
        • 2.2 Water
        • 2.3 Carbohydrates and lipids
        • 2.4 Proteins
        • 2.5 Enzymes
        • 2.6 Structure of DNA and RNA
        • 2.7 DNA replication, transcription and translation
        • 2.8 Cell respiration
        • 2.9 Photosynthesis
      • Topic 3: Genetics >
        • 3.1 Genes
        • 3.2 Chromosomes
        • 3.3 Meiosis
        • 3.4 Inheritance
        • 3.5 Genetic modification and biotechnology
      • Topic 4: Ecology >
        • 4.1 Species, communities and ecosystems
        • 4.2 Energy flow
        • 4.3 Carbon cycling
        • 4.4 Climate change
      • C: Ecology and conservation >
        • C.1 Species and communities
        • C.2 Communities and ecosystems
        • C.3 Impacts of humans on ecosystems
        • C.4 Conservation of biodiversity
      • Topic 5: Evolution and biodiversity >
        • 5.1 Evidence for evolution
        • 5.2 Natural selection
        • 5.3 Classification of biodiversity
        • 5.4 Cladistics
      • Topic 6: Human physiology >
        • 6.1 Digestion and absorption
        • 6.2 The blood system
        • 6.3 Defence against infectious disease
        • 6.4 Gas exchange
        • 6.5 Neurons and synapses
        • 6.6 Hormones, homeostasis and reproduction
    • Labs >
      • Statistical analysis
    • Previous to 2015 >
      • Topic 1: Statistical analysis
      • Topic 2: Cells >
        • 2.1 Cell theory
        • 2.2 Prokaryotic cells
        • 2.3 Eukaryotic cells
        • 2.4 Membranes
        • 2.5 Cell division
      • Option F: Microbes and biotechnology >
        • F1 Diversity of microbes
        • F2 Microbes and the environment
        • F3 Microbes and biotechnology
        • F4 Microbes and food production
      • Topic 5: Ecology and evolution >
        • 5.1 Communities and ecosystems
        • 5.2 The greenhouse effect
        • 5.3 Populations
        • 5.4 Evolution
        • 5.5 Classification
      • Option D: Evolution >
        • D1 Origin of life on Earth
        • D2 Species and speciation
        • D3 Human evolution
      • Topic 3: The chemistry of life >
        • 3.1 Chemical elements and water
        • 3.2 Carbohydrates, lipids and proteins
        • 3.3 DNA structure
        • 3.4 DNA replication
        • 3.5 Transcription and translation
        • 3.6 Enzymes
        • 3.7 Cell respiration
        • 3.8 Photosynthesis
        • TO DELETE
      • Topic 4: Genetics >
        • 4.1 Chromosomes, genes, alleles and mutations
        • 4.2 Meiosis
        • 4.3 Theoretical genetics
        • 4.4 Genetic engineering and biotechnology
      • Topic 6: Human health and physiology >
        • 6.1 Digestion
        • 6.2 The transport system
        • 6.3 Defence against infectious disease
        • 6.4 Gas exchange
        • 6.5 Nerves, hormones and homeostasis
        • 6.6 Reproduction
    • Tasks >
      • Databases
    • Documents
    • DP Biology Resources
    • Interesting links
  • Biología 12º
    • Bloque 1. Bioquímica
    • Bloque 2. Biología celular
    • Bloque 3. Genética y evolución
    • Bloque 4. Microbiología y biotecnología
    • Bloque 5. Inmunología
  • IB Biología NS
  • IB Chemistry HL
    • Contents >
      • Year 1 >
        • Topic 0 - Formulation
        • Topic 1 - Stoichiometric relationships
        • Topic 2 and 12 - Atomic structure
        • Topic 3 and 13 - Periodicity
        • Topic 4 and 14 - Chemical structure and bonding
        • Topic 5 and 15 - Energetics
        • Topic 10 and 20 - Organic chemistry
      • Year 2 >
        • Topic 6 and 16 - Chemical kinetics
        • Topic 7 and 17 - Equilibrium
        • Topic 8 and 18 - Acids and bases
        • Topic 9 and 19 - Redox processes
        • Topic 11 and 21 - Measurement and data processing
        • Option D - Medicinal chemistry
    • Lab work >
      • SFP Campus lab reports
      • Internal assessment structure
      • Internal Assessment examples
    • Nature of science
    • General revision
    • Selectividad
    • General information
    • Extended Essay
  • Other resources for students
    • Science Fair
    • Science essays >
      • How to Reference
    • Chemical formulation
    • Laboratory >
      • How to write a lab report
      • Microscopy
      • Excel for graphs and calculations >
        • Calculate the mean and SD
        • Drawing graphs
        • Add error bars to excel graphs
      • Lab videos!
    • Further Reading >
      • Women In Science
      • Infographics
    • Proyecto integrado
  • Department Home page
    • The International Baccalaureate
    • Conceptual learning
    • How will I be assessed?
    • Primary Science Club
    • Science Activities Noticeboard
  • MYP Year 6
    • Yr 6 Syllabus & Assessment
    • Contents >
      • Unit 1: Introduction to investigation >
        • How to write Lab Reports
      • Unit 2: Living things
      • Unit 3: Classification of living things
      • Unit 4: Fungi, Protists and Bacteria
      • Unit 5: Nutrition I
    • Laboratory and Tasks
  • MYP Year 7
    • Yr 7 Syllabus & Assessment
    • Contents >
      • 7º PAI en español
      • Unit 1 - What do scientists do? >
        • How to write a lab report
        • SI Units
      • Unit 2 - The Earth in the Universe
      • Unit 3: How can we study living things >
        • Unit 3a - Living things
        • Unit 3b - The Diversity of Life >
          • Monera
          • Protists
          • Fungi
          • The Plant Kingdom
          • The Animal Kingdom
      • Unit 4 - Ecosystems & Biodiversity
      • Unit 5: The systems of the Earth >
        • Unit 5a - The Geosphere and the Atmosphere
        • Unit 5b - The hydrosphere and the Biosphere
      • Unit 6: Our changing home >
        • Unit 6a: Internal Geodynamics
        • Unit 6b: External Geodynamics
    • Laboratory & Tasks
  • MYP Year 8
    • Yr8 Syllabus & Assessment
    • Contents >
      • Units 1, 2 and 3 - Measuring Matters >
        • Unit 1 Physical quantities and Scientific Activity >
          • Converting Units
        • Unit 2 Matter and its Properties
        • Unit 3 Pure Substances and Mixtures >
          • Concentration and units (g/L, % mass)
      • Units 4 and 5 - Chemical Cooking >
        • Models of the Atom
        • Electronic structure of matter.
        • Periodic table (distribution of elements).
        • Chemical formulation
        • Molecular mass
        • Moles
        • Types of reactions
        • Lavoisier's law: Balancing of equations
        • Reaction rates: Factors that affect the speed of a reaction
      • Units 6, 7 and 8 - Move It! >
        • Unit 6 - Motion (URM)
        • Unit 6 - Motion (UARM)
        • Unit 7 - Forces and Mass
        • Unit 8 - Energy and Transformations
    • Laboratory & Tasks >
      • How to write a lab report
  • MYP Year 9
    • Yr9 Syllabus & Assessment
    • Contents >
      • Unit 1 - General organization of the human body, health and illness >
        • Human cells: levels of organisation
        • Health and types of diseases
        • Preventing diseases
        • The Immune System
        • Transplants
        • Addictive substances and associated substances
        • Complete Unit 1
      • Unit 2 - Nutrition >
        • Nutrition and nutrients
        • The Mediterranean diet
        • The anatomy and physiology of the digestive system
        • The anatomy and physiology of the circulatory system >
          • Revision quizzes
        • The anatomy and physiology of the respiratory system
        • The anatomy and physiology of the excretory system
        • Nutrition Documentaries
      • Unit 3 - Interaction and Coordination >
        • The function and anatomy of the nervous system
        • The endocrine system
      • Unit 4 - The reproductive system >
        • Anatomy and physiology of the human reproductive system.
        • Gametogenesis
        • Menstrual cycle
        • Fertilization
        • Infertility, contraception and STDs
      • Unit 5 - Genetics >
        • DNA and genetic modification
        • Cells and Inheritance
        • MORE ON MITOSIS VS MEIOSIS
        • Mendelian genetics
      • Unit 6 - Evolution >
        • Evolutionary theories
        • Evolution Simulators
      • EXTRA Unit 7 - Ecology and the environment >
        • Ecology
    • Laboratory & Tasks
  • MYP Year 10
    • Yr10 Syllabus
    • Contents >
      • Unit 0 - Formulation
      • Unit 1 - Scientific Activity
      • Unit 2 - Kinetic theory
      • The Atmosphere
      • Unit 3 - Mixtures and pures substances: Colligative properties
      • Unit 4 - The structure of matter
      • Unit 5 - Stoichiometry
      • Unit 6 - Redox Reactions
      • Unit 7 - Movement
      • Unit 8 - Forces
      • Unit 9 - Electricity
      • Unit 10 - Energy
    • Revision
    • Assessments and Lab Sessionss >
      • Assessments >
        • Criterion D - Water crisis
      • Session 1 - Paper balls
      • Sessions 2 - Properties of substances
      • Session 3 - Preparing a Schlenk tube
      • Session 4 - Gas constant
      • Session 5 - Colligative properties
      • Session 6 - Job´s method
      • Session 7 - Redox titration
      • Session 8 - UARM
      • Session 9 - Hooke´s Law
    • PISA questions
  • DP Biology SL
    • Contents >
      • Topic 1: Cell biology >
        • 1.1 Introduction to cells
        • 1.2 Ultrastructure of cells
        • 1.3 Membrane structure
        • 1.4 Membrane transport
        • 1.5 The origin of cells
        • 1.6 Cell division
      • Topic 2: Molecular biology >
        • 2.1 Molecules to metabolism
        • 2.2 Water
        • 2.3 Carbohydrates and lipids
        • 2.4 Proteins
        • 2.5 Enzymes
        • 2.6 Structure of DNA and RNA
        • 2.7 DNA replication, transcription and translation
        • 2.8 Cell respiration
        • 2.9 Photosynthesis
      • Topic 3: Genetics >
        • 3.1 Genes
        • 3.2 Chromosomes
        • 3.3 Meiosis
        • 3.4 Inheritance
        • 3.5 Genetic modification and biotechnology
      • Topic 4: Ecology >
        • 4.1 Species, communities and ecosystems
        • 4.2 Energy flow
        • 4.3 Carbon cycling
        • 4.4 Climate change
      • C: Ecology and conservation >
        • C.1 Species and communities
        • C.2 Communities and ecosystems
        • C.3 Impacts of humans on ecosystems
        • C.4 Conservation of biodiversity
      • Topic 5: Evolution and biodiversity >
        • 5.1 Evidence for evolution
        • 5.2 Natural selection
        • 5.3 Classification of biodiversity
        • 5.4 Cladistics
      • Topic 6: Human physiology >
        • 6.1 Digestion and absorption
        • 6.2 The blood system
        • 6.3 Defence against infectious disease
        • 6.4 Gas exchange
        • 6.5 Neurons and synapses
        • 6.6 Hormones, homeostasis and reproduction
    • Labs >
      • Statistical analysis
    • Previous to 2015 >
      • Topic 1: Statistical analysis
      • Topic 2: Cells >
        • 2.1 Cell theory
        • 2.2 Prokaryotic cells
        • 2.3 Eukaryotic cells
        • 2.4 Membranes
        • 2.5 Cell division
      • Option F: Microbes and biotechnology >
        • F1 Diversity of microbes
        • F2 Microbes and the environment
        • F3 Microbes and biotechnology
        • F4 Microbes and food production
      • Topic 5: Ecology and evolution >
        • 5.1 Communities and ecosystems
        • 5.2 The greenhouse effect
        • 5.3 Populations
        • 5.4 Evolution
        • 5.5 Classification
      • Option D: Evolution >
        • D1 Origin of life on Earth
        • D2 Species and speciation
        • D3 Human evolution
      • Topic 3: The chemistry of life >
        • 3.1 Chemical elements and water
        • 3.2 Carbohydrates, lipids and proteins
        • 3.3 DNA structure
        • 3.4 DNA replication
        • 3.5 Transcription and translation
        • 3.6 Enzymes
        • 3.7 Cell respiration
        • 3.8 Photosynthesis
        • TO DELETE
      • Topic 4: Genetics >
        • 4.1 Chromosomes, genes, alleles and mutations
        • 4.2 Meiosis
        • 4.3 Theoretical genetics
        • 4.4 Genetic engineering and biotechnology
      • Topic 6: Human health and physiology >
        • 6.1 Digestion
        • 6.2 The transport system
        • 6.3 Defence against infectious disease
        • 6.4 Gas exchange
        • 6.5 Nerves, hormones and homeostasis
        • 6.6 Reproduction
    • Tasks >
      • Databases
    • Documents
    • DP Biology Resources
    • Interesting links
  • Biología 12º
    • Bloque 1. Bioquímica
    • Bloque 2. Biología celular
    • Bloque 3. Genética y evolución
    • Bloque 4. Microbiología y biotecnología
    • Bloque 5. Inmunología
  • IB Biología NS
  • IB Chemistry HL
    • Contents >
      • Year 1 >
        • Topic 0 - Formulation
        • Topic 1 - Stoichiometric relationships
        • Topic 2 and 12 - Atomic structure
        • Topic 3 and 13 - Periodicity
        • Topic 4 and 14 - Chemical structure and bonding
        • Topic 5 and 15 - Energetics
        • Topic 10 and 20 - Organic chemistry
      • Year 2 >
        • Topic 6 and 16 - Chemical kinetics
        • Topic 7 and 17 - Equilibrium
        • Topic 8 and 18 - Acids and bases
        • Topic 9 and 19 - Redox processes
        • Topic 11 and 21 - Measurement and data processing
        • Option D - Medicinal chemistry
    • Lab work >
      • SFP Campus lab reports
      • Internal assessment structure
      • Internal Assessment examples
    • Nature of science
    • General revision
    • Selectividad
    • General information
    • Extended Essay
  • Other resources for students
    • Science Fair
    • Science essays >
      • How to Reference
    • Chemical formulation
    • Laboratory >
      • How to write a lab report
      • Microscopy
      • Excel for graphs and calculations >
        • Calculate the mean and SD
        • Drawing graphs
        • Add error bars to excel graphs
      • Lab videos!
    • Further Reading >
      • Women In Science
      • Infographics
    • Proyecto integrado
San Francisco de Paula, Science Department.

UNIT 2 MATTER AND ITS PROPERTIES

Key concept - Systems - What systems can we use to observe and quanitfy what we see in our everyday life, and how can we communicate this information. 

Related concepts - Form - How can we use scientific models to explain and predict these changes? 

Global concept - Scientific and Technical Innovation - Matter is fundamental to our industrial and technological development, we need to understand its properties to utilise it to our best advantage. 

Key Words:

  • volume
  • mass
  • density
  • boiling point
  • melting point
  • condense
  • evaporate
  • melt
  • freeze
  • sublime(verb)
  • molecule
  • particle
  • kinetic model
  • state of matter
  • change of state
  • property
  • intensive
  • extensive
Task guide
The tasks and questions on the Weebly will be coloured to represent the different style of questions that you will find in your exams. The task should be completed in your "Natural Sciences" GoogleDrive document.

Green -   Stating scientific knowledge
Orange - Applying scientific knowledge and understanding
Red -     Analysing and evaluating information

There will also be "extension" tasks for students who finish tasks quickly! Also look out for links to interactive resources and videos.

Properties of Matter

Matter is the 'stuff' that things are made of - it occupies space and we can measure its properties.

General or extensive properties of matter depend on the amount of matter that is being measured, and do not allow us to identify or distinguish one substance from another; for example mass or volume..
​
Characteristic or intensive properties of matter do not depend on the amount of matter and help us identify or distinguish one substance from another (- for example colour, boiling/freezing point or density).

We use intensive properties to help distinguish matter. 

Mass is the quantity of matter in an object. The SI unit of mass is the kilogram (kg), although the gram is often used for smaller quantities and the tonne for larger quantities. Volume is the space an object occupies. The SI unit of volume is the cubic metre (m3).
Density is the relation between the mass and the volume of an object. The density of an object is the quotient of its mass per unit of volume. The Si unit of density is kg/m3. (It measures how concentrated the mass is).
​
Melting point is the temperature at which a solid, at standard pressure, completely changes into a liquid, and boiling point is the temperature at which a liquid boils and turns into a gas (or vapour), under standard pressure. The SI unit of temperature is the Kelvin (K), although the Celsius (ºC) temperature scale is often used.
 
Task 2a. 
Watch the video. 

  1. What extensive properties of the crown could you measure?
  2. Why is 'density' different to these properties?
  3. At the centre of a black hole is a 'singularity - a point of 'infinite' density. write the formula for density. Try to describe how you get an infinite number from this formula? (Hint: the mass IS measurable, usually incredibly large) 

Kinetic Particle Theory - Particles on the Move
The kinetic particle theory explains the properties of the different states of matter.

​States of Matter - Changing State

Everything is made of tiny particles. These particles are not free to move around in a solid, but they move freely in liquids and gases. As they randomly move they collide with each other and bounce off in all directions. 
These particles can establish forces of attraction between them. Depending on how strong these forces are the state of matter is determined. There are four states of matter: solid, liquid, gas and plasma. We will study the first three.
 
Solids have a fixed shape and a fixed volume. They cannot be compressed and do not flow.
Liquids have a definite volume, but not a definite shape, as they take the shape of the container they are in. They flow easily and are not compressible.
Gases have no definite volume or shape. They assume the volume and shape of the container they are in. They flow easily and can be compressed.
 
But, how can we explain the different characteristics of solids, liquids and gases? It is the arrangement of the particles and how strong the forces of attraction between them are that makes a difference. Let’s take a closer look!
Changing states – Phase changes
 
How do substances go from one state to another? It is all about energy!
 
We use heat (= thermal energy) to melt a solid. Heat makes the particles move faster. Once the particles have enough energy, they can start to overcome those forces which hold them together. As we keep providing energy in the form of heat the particles will move faster and eventually the liquid will boil and change into a gas (vapour). 

Phase changes

Phase changes graph
Note that d
uring a phase change the temperature remains constant.
Picture
Picture

States of Matter: Basics
Click to Run
Task 2b

This animation shows the molecules of Neon, Argon, Oxygen and Water.

  1. What happens to all the molecules when you make them colder?
  2. What happens to the molecules when you make them warmer?
  3. What happens if you keep heating the molecules?
  4. What are the three states of matter shown here?
  5. How do you make a substance change its state?
Task 2c.

Add the names of the following processes to this diagram: (You can either draw this in your notebook, or use google docs to complete it.
Picture
Extenstion task:

We have seen the three major states of matter, There is a fourth state of matter called a plasma - you might have it in your television. What can you find out about it? What about any other states of matter?

Vapour Pressure

The vapour pressure of a liquid is the pressure exerted by the vapour when equilibrium is reached between its vapour phase and its liquid phase.
Picture
("CH105: Lesson 2 - Intermolecular Bonds", 2016)
So, at any given temperature, for a particular substance there is a pressure at which the vapour of that substance is in equilibrium with its liquid form (the same number of particles leaving the liquid by evaporation return to the liquid by condensation). This is termed the vapour pressure of that substance at that temperature.
 
Why does this happen?
​Well, as not all particles have the same kinetic energy, in all liquids at a given temperature, some particles will move faster than others. The faster ones and near the surface have enough energy to escape and turn into a gas – evaporation – As the number of these gas particles increases, so will the vapour pressure. Eventually a point will be reached where the inverse process will take place; gas particles will lose energy and will turn back into the liquid state – condensation - , reaching an equilibrium, when evaporation rate equals condensation rate. At this point the pressure exerted by the vapour is called the vapour pressure.
Picture
("Vapor Pressure", 2016)
Boiling point

​As temperature increases more molecules are able to escape the liquid, and as a consequence vapour pressure increases and vice versa. When the pressure reaches atmospheric pressure the entire liquid will start to boil. We can therefore say that the boiling point of a liquid is that at which its vapour pressure equals atmospheric pressure.

Extension task:

Find out what is the cooling effect of evaporation and explain how it applies to sweating.
Task 2d.

There are several ways of making a liquid evaporate more quickly.
​Briefly explain two of these in your notebook.

unit_2_revision_students.pdf
File Size: 728 kb
File Type: pdf
Download File

References
(2016). Media1.shmoop.com. Retrieved 29 September 2016, from http://media1.shmoop.com/images/chemistry/chembook_matterprop_graphik_20.png
(2016). Images.tutorcircle.com. Retrieved 29 September 2016, from http://images.tutorcircle.com/cms/images/95/phase-change-diagram.PNG
BBC - Home. (2016). Bbc.co.uk. Retrieved 29 September 2016, from http://www.bbc.co.uk/
Gallagher, R. & Ingram, P. (2007). Complete chemistry for IGCSE. Oxford: Oxford University Press.
Kids.Net.Au - Encyclopedia. (2016). Encyclopedia.kids.net.au. Retrieved 30 September 2016, from http://encyclopedia.kids.net.au/
Pople, S. (2007). Complete physics for IGCSE. Oxford: Oxford University Press.
SlidePlayer - Upload and Share your PowerPoint presentations. (2016). Slideplayer.com. Retrieved 30 September 2016, from http://slideplayer.com/
SlideServe - Share Presentations and PDF Documents Online. (2016). SlideServe. Retrieved 30 September 2016, from http://www.slideserve.com/
SlideShare.net. (2016). www.slideshare.net. Retrieved 30 September 2016, from http://www.slideshare.net/
Stock Photos, Royalty-Free Images and Vectors - Shutterstock. (2016). Shutterstock.com. Retrieved 30 September 2016, from http://www.shutterstock.com
Powered by Create your own unique website with customizable templates.